

April 3, 2019

DAIM-ODB-LO

Mr. Rich Mayer U.S. Environmental Protection Agency Federal Facilities Section R6 1445 Ross Avenue Dallas, TX 75202-2733

Re: Draft Final Remedial Design and Remedial Action Work Plan, LHAAP-04 Former Pilot Wastewater Treatment Plant, Longhorn Army Ammunition Plant, Karnack, Texas, April 2019

Dear Mr. Mayer,

One hard copy and one compact disc (CD) of the above-referenced document are being transmitted to you for your records. The document includes revisions based upon the Environmental Protection Agency's (EPA) comments on the Draft version received on March 5, 2019, and Texas Commission on Environmental Quality's (TCEQ) comments received on March 12, 2019. In accordance with Federal Facility Agreement, this Draft Final will be considered Final after 30 days without further comment. Response to comments on the Draft version of the document are included with this Draft Final.

The document was prepared by Bhate Environmental Associates, Inc., (Bhate) team, on behalf of the Army as part of Bhate's Performance Based Remediation contract for the facility. I ask that Kim Nemmers, Bhate's Project Manager, be copied on any communications related to the project.

The point of contact for this action is the undersigned. I may be contacted at 479-635-0110, or by email at rose.m.zeiler.civ@mail.mil.

Sincerely,

Roem-Zilu

Rose M. Zeiler, Ph.D. Longhorn AAP Site Manager

Copies furnished:

- A. Palmie, TCEQ, Austin, TX (letter)
- P. Bruckwicki, Caddo Lake NWR, TX (1 hard copy and 1 CD)
- A. Williams, USACE, Tulsa District, OK (1 CD)
- R. Smith, USACE, Tulsa District, OK (electronic only)
- A. Maly, USAEC, San Antonio, TX (1 CD)
- K. Nemmers, Bhate, Lakewood, CO (1 CD)
- P. Srivastav, APTIM, Houston, TX (letter)

April 3, 2019

DAIM-ODB-LO

Ms. April Palmie Texas Commission on Environmental Quality Superfund Section, MC-136 12100 Park 35 Circle, Bldg D Austin, TX 78753

Re: Draft Final Remedial Design and Remedial Action Work Plan, LHAAP-04 Former Pilot Wastewater Treatment Plant, Longhorn Army Ammunition Plant, Karnack, Texas, April 2019

Dear Ms. Palmie,

One hard copy and one compact disc (CD) of the above-referenced document are being transmitted to you for your records. The document includes revisions based upon the Environmental Protection Agency's (EPA) comments on the Draft version received on March 5, 2019, and Texas Commission on Environmental Quality's (TCEQ) comments received on March 12, 2019. In accordance with Federal Facility Agreement, this Draft Final will be considered Final after 30 days without further comment. Response to comments on the Draft version of the document are included with this Draft Final.

The document was prepared by Bhate Environmental Associates, Inc., (Bhate) team, on behalf of the Army as part of Bhate's Performance Based Remediation contract for the facility. I ask that Kim Nemmers, Bhate's Project Manager, be copied on any communications related to the project.

The point of contact for this action is the undersigned. I may be contacted at 479-635-0110, or by email at rose.m.zeiler.civ@mail.mil.

Sincerely,

Rosem-Zilu

Rose M. Zeiler, Ph.D. Longhorn AAP Site Manager

Copies furnished:

- R. Mayer, USEPA Region 6, Dallas, TX (letter)
- P. Bruckwicki, Caddo Lake NWR, TX (1 hard copy and 1 CD)
- A. Williams, USACE, Tulsa District, OK (1 CD)
- R. Smith, USACE, Tulsa District, OK (electronic only)
- A. Maly, USAEC, San Antonio, TX (1 CD)
- K. Nemmers, Bhate, Lakewood, CO (1 CD)
- P. Srivastav, APTIM, Houston, TX (letter)

Response to Comments on Draft Remedial Design / Remedial Action Work Plan LHAAP-04 Former Pilot Wastewater Treatment Plant, Longhorn Army Ammunition Plant, Karnack, Texas

Document Date: 20 February 2019 Comment Date: 5 March 2019

Reviewer: Mr. Richard Mayer, USEPA Respondent: Dr. Rose Zeiler

1. Respondent Concurs (C), Does Not Concur (D), Takes Exception (E), or Delete (X)

2. Commenter Agrees (A) with response, or Does Not Agree (D) with response

Comment No.	Section, Page ref.	USEPA Comment	C, D, E, or X ¹	Response	A or D ²
1.	Section 2.5, Page 2-5, Last Paragraph	While the Fire Station was not used as a public supply well, EPA believes that the well was originally used for drinking water (for fire station employees) for a short period but was discontinued due to bad taste. The well continued to be used for showering and washing, etc. The water from the well was also chlorinated for some time, as chlorine cylinders were eventually removed from the well house.	С	The first two sentences of the last paragraph of Section 2.5 will be revised as follows: While the Fire Station well was installed to supply industrial process water for the groundwater treatment system, it may have been used briefly for drinking water and non-potable contact use by fire station employees. The well is not currently used or planned to be used as a public supply well or drinking water source.	
2.	Figure 2-2	The potable wells labelling on this figure should be changed to non-potable to be consistent with the narrative discussion.	C	Figure 2-2 has been revised to label the three water supply wells on LHAAP as "Non-Potable Water Supply Wells"	
3.	Figure 4-1	The LUC boundary should be larger than indicated on the figure if you consider the perchlorate contamination found in 04WW05 and 04HP012.	С	The Army and USFWS will coordinate revision of the LUC boundary to reflect the plume expansion beyond the Army property line onto the refuge. The revised LUC boundary will be published in the Response Action Completion Report. The process described in Section 4.1 will be followed to implement and record the revised LUC boundary.	

Comment No.	Section, Page ref.	USEPA Comment	C, D, E, or X ¹	Response	A or D ²
4.	Appendix A, Sample Collection Logs	Monitoring wells 04WW07 and LHSMW01 have a 0 reading [for turbidity] from the beginning to the end of the purge. Are those readings correct?	С	The turbidity readings shown on the form match the values recorded in the field. The logs for 04WW01 and 04WW10, collected on the same day immediately before and immediately after the two wells in question, both show measurable turbidity values, indicating that the meter was functioning properly.	
5.	Table 7-1	The schedule indicates that it will take one day to conduct the baseline sampling and gauging of the wells. There are 14 wells in the baseline sampling according to table 6-1. One day for sampling and gauging the wells seem rather optimistic.	С	Table 7-1 has been revised to show a 3-day duration for the baseline sampling.	

Response to Comments on Draft Remedial Design / Remedial Action Work Plan LHAAP-04 Former Pilot Wastewater Treatment Plant, Longhorn Army Ammunition Plant, Karnack, Texas

Document Date: 20 February 2019 Comment Date: 12 March 2019

Reviewer: Ms. April Palmie, TCEQ Respondent: Dr. Rose Zeiler

1. Respondent Concurs (C), Does Not Concur (D), Takes Exception (E), or Delete (X)

2. Commenter Agrees (A) with response, or Does Not Agree (D) with response

Comment No.	Section, Page ref.	TCEQ Comment	C, D, E, or X ¹	Response	A or D ²
1.	Section 5.2.1	Suggest revisions to match LHAAP-16 RAWP page 4-1 where Permitting and Notification are separate sections. Also, TCEQ needs 30-days for UIC coordination (as indicated in the schedule).	C	The text in section 5.2 has been revised to split Permitting and Notification as requested. The 30-day UIC coordination with TCEQ is noted.	
2.	Table 2-1	Completion dates for the most recent wells are incorrect.	С	The dates for the wells have been revised on the table and on the boring logs to reflect the actual completion date for each well.	
3.	Figure 4-1	LUC boundary doesn't include the entire plume.	С	The Army and USFWS will coordinate revision of the LUC boundary to reflect the plume expansion beyond the Army property line onto the refuge. The revised LUC boundary will be published in the Response Action Completion Report. The process described in	

Comment No.	Section, Page ref.	TCEQ Comment	C, D, E, or X ¹	Response	A or D ²
				Section 4.1 will be followed to implement and record the revised LUC boundary.	

Draft Final Remedial Design and Remedial Action Work Plan, LHAAP-04 Former Pilot Wastewater Treatment Plant Longhorn Army Ammunition Plant

Karnack, Texas

Prepared for U.S. Army Corps of Engineers, Tulsa District Contracting Division 2488 East 81st Street Tulsa, Oklahoma 74137-4290

Prepared by

1608 13th Avenue south, Suite 300 Birmingham, Alabama 35205 1-800-806-4001 • www.bhate.com Prepared by

Aptim Federal Services, LLC 2500 CityWest, Suite 1700 Houston, Texas 77042

Contract No. W9128F-13-D-0012 Task Order No. W9128BV17F0150 Project No. 501032 Rev 0 April 2019

Table of Contents

Contract No. W9128F-13-D-0012, Task Order No. W9128BV17F0150 • Draft Final • Rev 0 • April 2019

List List	of Fig of Ap	gures pendic	ces Abbreviations	iii iii
1.0	Intro	oductio	on	. 1-1
	1.1		ization of Work Plan	
	1.2		escription	
	1.3		ed Remedy	
	1.4		dial Action Objectives	
2.0	Site	Chara	cteristics	. 2-1
	2.1	Geolo	gy and Hydrogeology	2-1
	2.2		e and Extent of Contamination	
		2.2.1		
		2.2.2	Supplemental Groundwater Investigation	2-2
	2.3		nt and Future Land Use	
	2.4		nt and Future Surface Water Use	
	2.5		nt and Future Groundwater Use	
3.0	In-S		Remediation Remedial Design	
	3.1		rate Injection Strategies	
	3.2		s of Influence and Injection Point Spacing	
	3.3		rate Selection	
	3.4		rate Loading and Injection	
	3.5		mance Monitoring	
	3.6		Term Monitoring	
	3.7		dy Evaluation and Follow-up Injections	
4.0			Controls Remedial Design/Plan	
	4.1		mplementation	
	4.2		enance and Monitoring Requirements	
	4.3		nspection and Monitoring	
		4.3.1	Notice of Planned Property Conveyances	
		4.3.2	Opportunity to Review Text of Intended Land Use Controls	4-4
		4.3.3	Notification Should Action(s) which Interfere with Land Use Control	4 5
		4.3.4	Effectiveness be Discovered Subsequent to Conveyance	
			Land Use Control Enforcement Modification or Termination of Land Use Controls	
F 0		4.3.5		
5.0			premediation Work Plan	
	5.1 5.2		jection Plan	
	5.2		obilization Activities	
		5.2.1 5.2.2	Permitting Notification	
		5.2.2 5.2.3	Utility Clearance	
	5.3		ctivities	
	0.0	5.3.1	Baseline Sampling	
		5.3.1 5.3.2	Injection Activities	
		5.3.2 5.3.3		
		0.0.0		

Table of Contents (continued)

	5.4	DPT Drilling	
	5.5	ISB Injection	
		5.5.1 Preparation	
		5.5.1.1 Location Preparation	
		5.5.1.2 Amendment Preparation5-4	
		5.5.2 In Situ Injections	
		5.5.2.1 Injection System5-4	
		5.5.2.2 Monitoring During Injections	
		5.5.3 Remediation Derived Waste Management	
6.0	Post	-Remedial Monitoring and Reporting	
	6.1	Monitoring Network	
	6.2	Groundwater Sampling	
		6.2.1 Baseline Sampling	
		6.2.2 Evaluation of Injection Effectiveness	
		6.2.3 Performance Monitoring Year 1 and Year 2	
		6.2.4 Long-Term Monitoring Years 3 through 5	
		6.2.5 Long-Term Monitoring Beyond Year 5	
	6.3	Response Action Completion Report	
	6.4	Annual RA-O Reports	
		6.4.1 Remedy Evaluation	
	6.5	Follow-up Injection Criteria	
7.0		dule7-1	
8.0	Oper	ation and Maintenance Procedures8-1	
	8.1	Maintenance of the Current or Future Groundwater Monitoring System8-1	
9.0	References		

List of Tables

- Table 2-1 Monitoring Well Completion Summary
- Table 5-1
 Injection Locations and Amendment Volumes
- Table 6-1 Proposed Monitoring Network Locations and Analyses
- Table 7-1
 Schedule of Major Site Activities

List of Figures

- Figure 1-1 LHAAP Location Map
- Figure 1-2 LHAAP Site Location Map
- Figure 2-1a Potentiometric Map (January 2018)
- Figure 2-1b Potentiometric Map (January 2019)
- Figure 2-2 Site Vicinity Map
- Figure 2-3 Perchlorate Concentrations in Shallow Groundwater at LHAAP-04
- Figure 3-1 Proposed Injection Locations at LHAAP-04
- Figure 4-1 Preliminary LUC Boundary
- Figure 5-1 Injection Plan
- Figure 5-2 ISB DPT Injection System
- Figure 6-1 Performance and LTM Monitoring Network

List of Appendices

- Appendix A Boring Logs and Monitoring Well Construction Forms for Newly Installed Monitoring Wells
- Appendix B ISB Design Calculation Sheets
- Appendix C Product Specification and Safety Data Sheets
- Appendix D Daily ISB Injection Log
- Appendix E LUC Inspection and Maintenance Checklist and Compliance Certification

Contract No. W9128F-13-D-0012, Task Order No. W9128BV17F0150 • Draft Final • Rev 0 • April 2019

This page intentionally left blank.

Acronyms and Abbreviations

µg/L	micrograms per liter
APTIM	Aptim Federal Services, LLC
Bhate	Bhate Environmental Associates, Inc.
CERCLA	Comprehensive Environmental Response, Compensation, and Liability Act of 1980
COC	constituent of concern
DAP	diammonium phosphate
DNAPL	dense non-aqueous phase liquid
DO	dissolved oxygen
DPT	direct-push technology
ECP	Environmental Condition of Property
EDS-ER TM	Electron Donor Solution – Extended Release
EPA	see USEPA
EVO	emulsified vegetable oil
ft bgs	feet below ground surface
GPS	global positioning system
GWTP	groundwater treatment plant
ISB	in situ bioremediation
IWWP	Installation-Wide Work Plan
Jacobs	Jacobs Engineering Group, Inc.
LHAAP	Longhorn Army Ammunition Plant
LOE	lines of evidence
LTM	long-term monitoring
LUC	land use controls
MATOC	Multiple Award Task Order Contract
MCL	maximum contaminant level
MEGA	Multiple Environmental Government Acquisition
MMRP	Military Munitions Response Program
MOA	Memorandum of Agreement
mV	millivolts
NCP	National Contingency Plan
O&M	operation and maintenance
O ₂	oxygen
ORP	oxidation-reduction potential

Acronyms and Abbreviations (continued)

PCL	Protective Concentration Level
psi	pounds per square inch
RA	remedial action
RACR	Response Action Completion Report
RA-O	Remedial Action-Operation
RAOs	remedial action objectives
RAWP	Remedial Action Work Plan
RCRA	Resource Conservation and Recovery Act
RD	remedial design
ROD	Record of Decision
ROI	radius of influence
Shaw	Shaw Environmental, Inc.
TAC	Texas Administrative Code
TCEQ	Texas Commission on Environmental Quality
TOC	total organic carbon
TRRP	Texas Risk Reduction Program
U.S. Army	U.S. Department of the Army
USACE	U.S. Army Corps of Engineers
USEPA	U.S. Environmental Protection Agency
USFWS	U.S. Fish and Wildlife Service

1.0 INTRODUCTION

The U.S. Army Corps of Engineers (USACE), Tulsa District, contracted Bhate Environmental, Inc. (Bhate), under the Omaha Multiple Environmental Government Acquisition (MEGA) National Small Business Multiple Award Task Order Contract (MATOC) Environmental Remediation Services with Military Munitions Response Program (MMRP), Task Order No. W9128BV17F0150 to conduct environmental restoration of LHAAP-04 at Longhorn Army Ammunition Plant (LHAAP). The Bhate Team is comprised of Bhate and Aptim Federal Services, LLC (APTIM). LHAAP is an inactive, government owned formerly contractor operated and maintained Department of Defense facility located central east Texas (Figure 1-1). This Remedial Design (RD) and Remedial Action Work Plan (RAWP) describes the basis for the design of the planned remedial action (RA) and the activities and methods planned to implement the RA to address risks associated with contaminated groundwater at LHAAP-04. This RD/RAWP has been developed to implement the selected remedy for LHAAP-04 described in the *Final Record of Decision* (ROD) for LHAAP-04 (AECOM 2016).

1.1 Organization of Work Plan

This document is composed of the following sections:

- Section 1.0: "Introduction" summarizes the site background, proposed remedy, and remedial action objectives (RAOs).
- Section 2.0: "Site Characteristics" summarizes the geology and hydrogeology of the site, as well as the nature and extent of contamination.
- Section 3.0: "In-Situ Bioremediation Remedial Design" describes the basis for design of the in-situ bioremediation (ISB) injections, the calculations used to determine bioremediation and bioaugmentation amendments to be used, and the proposed injection volumes. The section also described monitoring and the lines of evidence (LOE) used to evaluate the performance of the remedy.
- Section 4.0: "Land Use Control Remedial Design/Plan" describes the land use controls (LUCs) to be implemented to achieve the remedial objectives.
- Section 5.0: "In Situ Bioremediation Work Plan" describes the injection activities and methodologies to be implemented for the in-situ bioremediation component of the remedy.
- Section 6.0: "Post-Remedial Monitoring and Reporting" describes the remedial performance monitoring and reporting that will be performed after ISB injections.

- Section 7.0: "Schedule" describes the proposed implementation schedule for the RA activities.
- Section 8.0: "Operation and Maintenance Procedures" describe the operation and maintenance activities and other routine activities that form part of the final remedy.
- Section 9.0: "References" provides a list of references cited in the document.

This work plan also includes the following appendices supporting the main text.

- Appendix A includes the boring logs for the newly installed shallow and intermediate zone monitoring wells.
- Appendix B includes the calculation sheets and proposed injection volume worksheets for the ISB component of the remedy.
- Appendix C includes the Product Specification and Safety Data Sheets for the emulsified vegetable oil (EVO) product used in the RD calculations.
- Appendix D includes a blank injection log that will be used in the field to track injection volumes, flow rates and pressures.
- Appendix E includes the sample Annual LUC Compliance Checklist and Compliance Certification.

1.2 Site Description

LHAAP is approximately 14 miles northeast of Marshall, Texas, and approximately 40 miles west of Shreveport, Louisiana. The installation occupies approximately 1,400 of its former 8,416 acres between State Highway 43 at Karnack, Texas, and the western shore of Caddo Lake. The facility can be accessed via State Highways 43 and 134.

LHAAP-04, known as Site 04 or the former pilot wastewater treatment plant, is approximately 0.5 acres and is located in the central portion of LHAAP at the northwest corner of 6th and 60th Streets near the former fire station (**Figure 1-2**). LHAAP-04 is surrounded by light duty roads. Wastewater treatment operations began at LHAAP-04 in 1984. The demolition of the former pilot wastewater treatment facility structures, tanks, and piping, and the disposal of the associated wastes were completed in the summer of 1997 as part of the Resource Conservation and Recovery Act (RCRA) closure of the plant. Under the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) program, excavation of soil impacted with mercury and perchlorate at the LHAAP-04 site was completed in 2009 along the southern edge of the slab, which formerly housed storage tanks for the former pilot wastewater treatment facility.

The U.S. Department of the Army (U.S. Army) issued the Final ROD for LHAAP-04 (AECOM 2016) in October 2016, and was signed by the Army on December 15, 2016, and the U.S. Environmental Protection Agency (USEPA) on March 30, 2017. The Texas Commission on Environmental Quality (TCEQ) issued a letter concurring with the ROD on February 7, 2017. The ROD identified perchlorate as the only constituent of concern (COC) in groundwater for LHAAP-04. The remedy selected in the ROD included in-situ bioremediation (ISB) for perchlorate concentrations in groundwater, long-term monitoring (LTM) of groundwater, and LUCs to maintain the remedy and prohibit groundwater use until COC concentrations are reduced to levels supportive of unlimited use and unrestricted exposure. The selected remedy is summarized further in **Section 1.3**.

1.3 Selected Remedy

The selected remedy was summarized in Section 1.4 of the Final ROD (AECOM 2016) as follows:

- ISB of perchlorate contaminated groundwater in an area in the vicinity of monitoring well 04WW04. Multiple injections of substrate may be needed based on effectiveness of the ISB. Bioaugmentation using appropriate microbial culture to facilitate ISB may be performed, if necessary. Prior to ISB, two shallow zone and one intermediate zone monitoring wells are planned to refine the perchlorate plume configuration.
- LTM to confirm the protection of human health and the environment by documenting the return of groundwater to the cleanup level (maximum contaminant level [MCL] or Texas Risk Reduction Program [TRRP] Tier 1 Residential Groundwater Protective Concentration Level [PCL]) through reduction of the contaminant mass, and by preventing the perchlorate-contaminated groundwater plume from migrating into surface water.
- The LUC objectives include maintaining the integrity of any current or future remedial or monitoring systems and preventing the use of groundwater contaminated above cleanup levels as a potable water source. The groundwater treatment and LTM remedial components include a groundwater monitoring system that will be used to characterize the condition of the groundwater during the period the groundwater remedy is in place until the groundwater remediation goals are achieved, and to demonstrate achievement of the groundwater remediation goals when the groundwater remedy is complete. As a part of this groundwater remedy, the Army will maintain the remedial and monitoring systems associated with the groundwater remedies until these components of the remedy are no longer needed to achieve cleanup levels, and cleanup levels have been achieved. During the period of operation of the groundwater remedial and groundwater

monitoring systems are damaged, destroyed, or become ineffective, they will be repaired or replaced with suitable components to assure that the remedial and groundwater monitoring systems are able to provide data of the quality necessary to determine the progress of and eventual completion of this component of the remedy. The actions to be taken to implement these LUC objectives and requirements will be provided through modifying the "Comprehensive Land Use Control Management Plan, Former Longhorn Army Ammunition Plant, Karnack, Texas" and detailed in the LUC RD.

- The LUC for prohibition of groundwater use (except for monitoring and testing) shall be implemented and shall remain in place at the Site until the levels of COCs in surface and subsurface soil and groundwater are reduced below levels that would support unlimited use and unrestricted exposure. A LUC RD will be finalized as the land use component of the RD. Within 21 days of the issuance of the ROD, the Army will propose deadlines for completion of the RD Work Plan, RD, and RAWP. The documents will be prepared and submitted to the EPA and the TCEQ pursuant to the Federal Facility Agreement. The LUC RD will contain implementation and maintenance actions, including periodic inspections. The LTM groundwater plan will also be presented in the RD. The recordation notification for the Site which will be filed with Harrison County, will include a description of the LUCs.
- CERCLA five-year reviews until the levels of COCs in groundwater allow for unlimited use and unrestricted exposure.

1.4 Remedial Action Objectives

The RAOs developed for LHAAP-04 and outlined in the Final ROD (AECOM 2016) are:

- Protect human health by preventing ingestion of groundwater contaminated with perchlorate
- Return groundwater to its potential beneficial use, wherever practicable, within a reasonable time period given the particular site circumstances
- Prevent groundwater contaminated with perchlorate from migrating into nearby surface water

The above RAOs recognize the USEPA's policy to return all groundwater to beneficial uses, based on the non-binding programmatic expectation in the National Contingency Plan (NCP) and is consistent with the NCP regulations requiring the lead agency, the U.S. Army in this case, to establish RAOs specifying contaminants and media of concern, potential exposure pathways, and remediation goals.

1-4

Per the ROD's RAOs, and consistent with the NCP, groundwater will be returned to its beneficial uses as drinking water. The groundwater cleanup level for perchlorate at the Site is the TRRP Tier 1 PCL for residential groundwater, 17 micrograms per liter (μ g/L), and is protective of human health and the environment.

Contract No. W9128F-13-D-0012, Task Order No. W9128BV17F0150 • Draft Final • Rev 0 • April 2019

This page intentionally left blank.

2.0 SITE CHARACTERISTICS

2.1 Geology and Hydrogeology

LHAAP-04 is situated on the outcrop of the Wilcox Group which generally consists of a few feet of residually derived soils overlying interbedded silts and clays. Based on the site lithology, the shallow zone water bearing sand at monitoring well 04WW04 appears to be only one- to two-feet-thick, and surrounding monitoring wells mostly show clay or silt layers at the same depth.

The depth to groundwater across LHAAP varies with typical depths being 8 to 20 feet below ground surface (ft bgs) in the shallow zone. The regional groundwater flow direction beneath the facility is generally east- northeast towards Caddo Lake but varies by site location (Jacobs 2002).

As required by the Final ROD (AECOM 2016), two additional shallow groundwater monitoring wells (04WW06 and 04WW07) and one intermediate zone monitoring well (04WW08) were installed to refine the perchlorate plume configuration. The boring logs for these wells are included as **Appendix A**.

Shallow groundwater at LHAAP-04 has been assessed via twelve monitoring wells installed near LHAAP-04 to depths of approximately 20 to 25 ft bgs. An intermediate zone well (04WW08) was installed with a screened interval from 31 to 41 ft bgs and confirmed that the intermediate zone was present. Well construction information is shown on **Table 2-1**. Based on the 2018 and 2019 potentiometric surface maps (**Figure 2-1a** and **Figure 2-1b**), the groundwater flow direction in the shallow saturated zone below LHAAP-04 is to the southwest across the area of the site where perchlorate concentrations exceed the PCL. The groundwater elevations measured in January 2019 were 1 to 3 feet higher than those measured in January 2018, which is reflective of the increased recharge to the shallow aquifer from the unusually high rainfall received during 2018.

Rising head slug tests were performed on one well near LHAAP-04 to calculate hydraulic conductivity values using the Bouwer-Rice method. The hydraulic conductivity value for the shallow saturated zone was 3.5×10^{-5} centimeters per second at well LHSMW01 (Shaw 2012).

Goose Prairie Creek runs approximately 700 feet to the south of LHAAP-04 site as shown on **Figure 2-2**. Based on the network of monitoring wells located at the site, perchlorate-impacted groundwater in the shallow zone does not appear to have migrated more than 100 feet from the source area, indicating no threat to Goose Prairie Creek. Groundwater modeling also concluded there should be no impact to surface water from shallow zone groundwater

(Shaw 2007). The modeling was conservative, utilizing the highest previously detected perchlorate concentration in groundwater at the source (78,200 μ g/L) that was approximately 1000 times the highest groundwater concentration measured at LHAAP-04 in 2018 (78 μ g/L). Finally, perchlorate concentrations in surface water samples collected in 2010 and 2011 were less than the TRRP Tier 1 Groundwater Residential PCL (AECOM 2016).

2.2 Nature and Extent of Contamination

The former pilot wastewater treatment plant was the most likely source of contaminants being released into the environment. Since the plant has been removed and the mercury and perchlorate contaminated soil associated with leaks and/or spills from the plant was excavated in a non-time critical removal action in 2009 (Shaw 2011), there is no longer a potential soil source for releases to groundwater. The groundwater to surface water migration pathway is not complete under current conditions. Protection of surface water will be confirmed with groundwater monitoring and evaluation of plume behavior with implementation of the groundwater remedy (AECOM 2016). The only groundwater COC for LHAAP-04 identified in the Final ROD (AECOM 2016) is perchlorate.

2.2.1 2017 Monitoring Well Installation and Sampling

As required in the ROD, two additional shallow groundwater monitoring wells (04WW06 and 04WW07) and one intermediate zone monitoring well (04WW08) were installed in December 2017 (**Figure 2-3**). Ten monitoring wells at LHAAP-04 were sampled in January 2018 to determine the current plume conditions from which to plan the RD. The concentration at 04WW04 was significantly lower than the previous concentrations detected in 2011, upon which the ROD was based. The perchlorate concentration at 04WW05 also increased to above the PCL, indicating that the plume may have shifted slightly to the south and west, but the lack of monitoring locations west of 04WW05 meant the plume was not fully delineated. The January 2018 concentrations observed in the remaining wells were less than the PCL. The intermediate zone well (04WW08) contained a perchlorate concentration of 1.5 μ g/L, well below the PCL and not indicative of significant vertical plume migration.

2.2.2 Supplemental Groundwater Investigation

Due to the undelineated western edge of the shallow perchlorate plume, a supplemental groundwater sampling investigation was performed in accordance with a Technical Memorandum (Bhate 2018a) that was revised and approved by EPA and TCEQ. The purpose of the investigation was to collect groundwater samples to delineate the western and southern plume boundaries. The work proposed in the Technical Memorandum included groundwater sampling at 12 direct-push technology (DPT) points in a phased manner, installation of three monitoring wells, and a round of groundwater sampling from the existing shallow wells and the three new wells. Eight initial DPT borings (04HP01 through 04HP08) were drilled in

November 2018 using a tractor mounted direct-push sampling rig. Groundwater samples were collected in accordance with the procedures outlined in the Technical Memorandum (Bhate 2018a).

The analytical results from the first eight DPT sample locations were used to select the four additional locations to be sampled. The four additional DPT borings were drilled and groundwater sampled in December 2018. One of the borings was inadvertently drilled at the wrong location, so a fifth location was drilled in the proper location. The analytical results from all 13 locations are shown on **Figure 2-3** and were used to select the locations for three new monitoring wells to be installed. The coordinates for the DPT locations shown on **Figure 2-3** were measured in the field using a Trimble handheld GPS unit and are accurate to within approximately two feet. The perchlorate concentrations detected at 04HP01 and 04HP05 confirmed that high levels of perchlorate were still present in the vicinity of the soil excavation area but had shifted slightly west from 04WW04. Non-detect results at 04HP02, 04HP03, 04HP09, 04HP10, 04HP11, and 04HP13 successfully delineated the western and southern extent of the plume.

Three 4-inch-diameter wells were installed in January 2019. One shallow monitoring well (04WW11) was installed to the west of 04HP05 to provide a downgradient clean well to bound the plume for future monitoring, while two monitoring wells (04WW09 and 04WW10) were placed adjacent to the DPT locations with the highest perchlorate concentrations detected. The well locations are shown on **Figure 2-3**.

Upon completion of the monitoring well installations, they were developed and sampled along with the nine existing shallow monitoring wells in January 2019. **Figure 2-3** shows the 2010, 2011, 2018, and 2019 perchlorate concentrations detected and shows a plume boundary based on the January 2019 analytical results. Based on the 2019 results, there is a hot spot centered along the western boundary of the soil excavation area. The concentrations are similar in magnitude to those previously detected at 04WW04 and indicate that the plume has moved slightly west from 04WW04 between 2010-2011 and 2019.

2.3 Current and Future Land Use

LHAAP is located near the unincorporated community of Karnack, Texas. Karnack is a rural community with a population of approximately 775 people. The incorporated community of Uncertain, Texas, approximate population 205, is located to the northeast of LHAAP on the edge of Caddo Lake and is a resort area and an access point to Caddo Lake. The industries in the surrounding area consist of agriculture, timber, oil and natural gas production, and recreation.

LHAAP has been an industrial facility since 1942. Production activities and associated waste management activities continued until the facility was determined to be in excess of the U.S. Army's needs in 1997. The plant area has been relatively dormant since that time. LHAAP is surrounded by a fence (except on the border with Caddo Lake) with an access gate that is locked after daylight hours, which restricts public access. The fence now represents the National Wildlife Refuge boundary. The public can access most of the facility during the day with additional fencing and signage restricting access from environmental sites.

The reasonably anticipated future use of LHAAP-04 is as part of a national wildlife refuge. This anticipated future use is based on a Memorandum of Agreement (MOA) (U.S. Army 2004) between the U.S. Fish and Wildlife Service (USFWS) and the U.S. Army. That MOA documents the transfer process of the LHAAP acreage to USFWS to become the Caddo Lake National Wildlife Refuge and will be used to facilitate a future transfer of LHAAP-04. Presently the Caddo Lake National Wildlife Refuge occupies approximately 7,000 acres of the 8,416-acre former installation. In accordance with the National Wildlife Refuge System Administration Act of 1966 and its amendments (16 USC 668dd), the land will remain as a national wildlife refuge unless there is a change brought about by an act of Congress, or the land is part of an exchange authorized by the Secretary of the Interior. (AECOM 2016).

2.4 Current and Future Surface Water Use

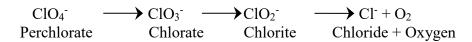
There are no surface water bodies present within LHAAP-04. Surface water runoff from LHAAP-04 drains toward the southern branch of Goose Prairie Creek, located approximately 700 feet south of LHAAP-04, and which flows into Caddo Lake, a large recreational lake covering 51 square miles with a mean depth of 6 feet. The watershed of the lake encompasses approximately 2,700 square miles. Caddo Lake is used extensively for fishing and boating and provides drinking water supply to multiple cities/towns. The anticipated future uses of surface water are the same as the current uses.

2.5 Current and Future Groundwater Use

Groundwater in the drinking water aquifer (250 to 430 ft bgs) under and near LHAAP is currently used as a drinking water source. The drinking water aquifer should not be confused with LHAAP "deep zone" groundwater, which extends only to a depth of approximately 151 ft bgs. The aquifer containing contaminated groundwater and the aquifer utilized for drinking water are distinct from each other with no connectivity. TCEQ identifies six active public water supply wells completed in the drinking water aquifer near LHAAP (see **Figure 2-2**). Karnack Water Supply Corporation operates two source wells servicing the town of Karnack. These wells were completed in 1905 to depths of 287 and 285 ft bgs and are located hydraulically upgradient approximately one-quarter mile northwest and one-half mile southwest of the town center, respectively. Caddo Lake Water Supply Corporation operates three source wells located north and northwest of LHAAP that have been in use since 1905. These wells are hydraulically upgradient of LHAAP (Jacobs 2002) with completion depths of 244, 185, and 310 ft bgs. Caddo Lake State Park operates one source well located approximately 1.6 miles northwest upgradient of LHAAP. This well was installed in 1905 with a total depth of 292 feet. Due to the large distance between these wells and LHAAP, water removal from these wells is not expected to affect groundwater flow at the site. In addition, there are several livestock and domestic wells located in the vicinity of LHAAP with depths averaging approximately 250 ft bgs. Because the extent of perchlorate contaminated groundwater is limited, it is not relevant to any of the drinking water wells.

Three water supply wells are located within the boundary of LHAAP itself (**Figure 2-2**). One well is located at the Fire Station with a total depth of 128 feet and a screened interval from 58 to 128 ft bgs; the second well is located upgradient of LHAAP-04 approximately 0.35 miles southwest of the Fire Station. The third well is located north of the USFWS administration building for Caddo Lake National Wildlife Refuge, near the main entrance to LHAAP. Two additional wells previously supplied water to the installation, but these have been plugged and abandoned. None of these three wells are currently used for drinking water at LHAAP, although they may supply water for non-potable uses.

While the Fire Station well was installed to supply industrial process water for the groundwater treatment system, it may have been used briefly for drinking water and non-potable contact use by fire station employees. The well is not currently used or planned to be used as a public supply well or drinking water source. The taps in or around the firehouse are not used for drinking water and are marked non-potable. Although the anticipated future use of the facility as a national wildlife refuge does not include the use of the groundwater at LHAAP-04 as a drinking water source, the State of Texas designates all groundwater as potential drinking water, unless otherwise classified, and consistent with 30 Texas Administrative Code (TAC) 335.563(h)(1). To be conservative, a hypothetical industrial use scenario was evaluated for risk. The future industrial scenario for LHAAP assumes limited use of groundwater as a drinking water source.


Contract No. W9128F-13-D-0012, Task Order No. W9128BV17F0150 • Draft Final • Rev 0 • April 2019

This page intentionally left blank.

3.0 IN-SITU BIOREMEDIATION REMEDIAL DESIGN

In general, implementation of ISB will include injection of an electron donor/substrate in the subsurface. The indigenous microorganisms will grow and multiply using injected substrate as a carbon and energy source, thereby degrading perchlorate. The schematic showing the degradation pathway for perchlorate is provided below.

Perchlorate Degradation Pathway

ISB will be implemented at LHAAP-04 to remediate groundwater impacted with perchlorate. The ISB remedy rationale described in Section 2.12.1 of the Final ROD (AECOM 2016) was to treat the hot spot of perchlorate in the vicinity of 04WW04. The 2019 data discussed in **Section 2.2.2** indicates that the hot spot has moved slightly west from 04WW04 to the vicinity of 04WW09 and 04WW10. Accordingly, the remedy described in this section is designed to treat the hot spot with concentrations exceeding five times the 17 μ g/L cleanup level (85 μ g/L). The ISB system has been designed and implemented to remediate perchlorate in the groundwater down to the PCL using EVO and nutrients as the injected amendments. The EVO and nutrients will be mixed with water and injected using temporary DPT injection points within the plume area currently exceeding the PCL. The specific basis for the various design parameters selected is described in the following sections. Field implementation procedures for the ISB remedy are described in **Section 5.0**. ISB calculation sheets used to develop the RD parameters described below are provided in **Appendix B**.

3.1 Substrate Injection Strategies

The ISB substrate will be injected at approximately 25 temporary DPT locations spaced approximately 20 to 25 feet apart as shown on **Figure 3-1**. A DPT injection system will be used to inject substrate over an eight-foot treatment interval coinciding with the saturated water bearing interval at each proposed injection point. The treatment interval depth will vary depending on the lithologic information from the wells and borings nearest to each injection location. The injection interval will target the saturated sandy and silty zones above the dark gray hard clay typically encountered at approximately 18 to 22 ft bgs. The injection locations within the excavation footprint may be performed slightly deeper to minimize the potential for surfacing of injection fluids through the backfilled area.

Several direct push injection points may be manifolded for simultaneous injection to maximize delivery efficiency. The substrate will be injected at relatively low pressures (generally less than 40 pounds per square inch [psi]) to avoid development of preferential flow pathways

within the formation and/or surfacing of injection fluids. The injection pressure at each injection location will be dictated by the formation back pressure on the pumping system but will be controlled by use of pressure relief valves.

3.2 Radius of Influence and Injection Point Spacing

The low hydraulic conductivity and generally silty character of the shallow groundwater zone suggest that the radius of influence (ROI) for each DPT injection location will be low. Based on our experience at other locations on LHAAP and knowledge of the hydrogeologic conditions described in **Section 2.1**, the ROI used to calculate the number of points needed was 10 feet, and the DPT injection point spacing will be 20 to 25 feet.

3.3 Substrate Selection

EVO was selected as the substrate for ISB because of the relative ease of injection and the long lifespan of the substrate. It has previously been estimated that reducing concentrations to below the PCL using ISB at LHAAP-04 would require approximately six years (AECOM 2016). However, given the reduction in maximum concentrations at LHAAP-04 since those estimates were made, it is likely that the site will be fully remediated within the 3 to 5-year lifespan of the initial injections, and subsequent reinjections are likely to be unnecessary. The specific formulation of EVO used to develop the injection volumes for this project is Electron Donor Solution – Extended Release (EDS-ERTM) available from Tersus Environmental (**Appendix C**). EDS-ERTM is a water-mixable oil formulated with 100% EVO content (no water in the emulsion). EDS-ERTM or equivalent is expected to be cost-effective since it would eliminate the need for continuous or more frequent injection of substrate into the subsurface.

EDS-ERTM is provided by the vendor as water-mixable oil that contains no water as shipped; therefore, it will be mixed with water in the field. Use of EDS-ERTM or an equivalent volume of a similar product will reduce the cost and environmental footprint associated with transportation of higher volumes of more dilute substrate to the site. The product mixes easily with water and does not require high energy mixers. It formulates a completely miscible product when mixed with water (it does not create emulsions or particles in water), thus preventing clogging effects when injected in groundwater. A mixing tank located adjacent to the location of the planned injection area will be used to mix the product with water. The product will be added to the tank in the volume desired, followed by pumping clean potable water into the tank to produce the mixture with the design concentration for injection. No mixers will be required due to the nature of the EDS-ERTM oil. The manufacturer's product information sheet is provided in **Appendix C**.

The indigenous microbial types needed to degrade perchlorate are likely to be present in the existing groundwater; therefore, no bioaugmentation is anticipated to be necessary. However, nutrients in the form of diammonium phosphate (DAP) will provide essential levels of nitrogen and phosphate required for microbial activity. The nutrients will be added to each mixed batch following addition of the mix water, prior to injection.

3.4 Substrate Loading and Injection

The mass of EVO required for the shallow treatment zone shown on **Figure 3-1** was estimated based on comparison of 1) the stoichiometric demand exerted by the native (e.g., dissolved oxygen [DO], nitrate, and sulfate) and anthropogenic electron acceptors, and 2) the quantity of EVO necessary to treat the entire treatment zone when accounting for adsorption to the aquifer material. These calculations were performed using the EOS[®] Remediation Source Area and dense non-aqueous phase liquid (DNAPL) Design Worksheet version 2.1f dated June 18, 2008. **Appendix B** provides the input and output calculations spreadsheets. The higher of the two values is used for the planned injection quantities.

The aquifer treatment demand based on EOS's 60% carbon product is 5,107 pounds (**Appendix B**). That is equivalent to 3,064 pounds of 100% carbon EDS-ERTM. The concentrated solution of EDS-ER will be diluted by mixing 15 gallons of EDS-ERTM and 6 gallons or nutrients with approximately 1,463 gallons of water to achieve the desired treatment volume for each injection point as shown on the treatment area calculation sheet in **Appendix B**. Approximately 36,945 gallons of dilute EDS-ERTM mixture will be injected into 25 injection points shown on **Figure 3-1**.

3.5 Performance Monitoring

Per the Final ROD (AECOM 2016), performance monitoring will be performed on a quarterly basis for a period of two years and will include analysis of perchlorate and geochemical parameters (sulfate, nitrate, nitrites, alkalinity). Field parameters will include DO, redox potential and ferrous ion. Performance monitoring activities are discussed in greater detail in **Section 7.2.3**. Annual reports will be prepared to document the effectiveness of the treatment. The first year annual report will include a review of the four quarters of data and provide an evaluation of the effectiveness of the selected remedy.

3.6 Long-Term Monitoring

Per the Final ROD (AECOM 2016), LTM will begin in Year 3 after treatment and will be conducted semiannually for 3 years (through Year 5), and annually thereafter. Additional details regarding LTM are provided in **Section 7.2.4**.

3.7 Remedy Evaluation and Follow-up Injections

Remedial performance will be evaluated using two primary LOEs to determine if the remedy is operating properly:

- Plume stability (i.e., plume concentrations are declining in the performance wells, and the plume is not expanding in area as demonstrated by downgradient monitoring wells)
- Reducing conditions conducive for the degradation of perchlorate are present within the treatment area

Follow-up injections may be needed if the remedy is determined to not be performing, although reinjections are not expected to be needed within the 3 to 5-year lifespan of the EVO mixture selected. Nonetheless, the decision for reapplication of organic carbon will be made based on groundwater monitoring results. Three criteria for determining the potential need to reinject are:

- Contaminant concentrations in groundwater are not trending downward at a rate indicative of achieving the cleanup level in approximately six years
- Depletion of the organic carbon to below 20 mg/L
- Oxidation-reduction potential (ORP) increases above -50 millivolts (mV)

If one or more of the criteria described above are met for two consecutive sampling events in the same sampling location, the need for additional injections in that area will be evaluated.

4.0 LAND USE CONTROLS REMEDIAL DESIGN/PLAN

This section describes the LUC RD for LHAAP-04. In accordance with the Final ROD (AECOM 2016), the LUC RD will be finalized as the land use component of the RD.

Per the Final ROD (AECOM 2016), LUCs' performance objectives are to:

- Prohibit the use of groundwater (except for environmental testing and monitoring) as a potable water source
- Restrict land use to nonresidential
- Maintain the integrity of any current or future remedial or monitoring systems

The implementation, maintenance, and inspection requirements associated with each of the performance objectives that comprise this LUC RD are described below. The proposed actions to be taken to implement the LUC objectives during the RA phase are described in **Section 6.0**. The implementation activities, as well as ongoing maintenance, monitoring and reporting requirements will be presented in the Remedial Action Completion Report (RACR), as the final LUC RD. Upon regulatory review and concurrence with the final LUC RD, it will be included as part of the Comprehensive LUC Management Plan.

For portions of the Site subject to LUCs that are not owned by the Army, the Army will monitor and report on the implementation, maintenance, and enforcement of LUCs, and coordinate with federal, state, and local governments and owners and occupants of properties subject to LUCs. The Army remains responsibility for ensuring that the remedy remains protective of human health and the environment.

4.1 LUC Implementation

The actions required to implement the LUCs for LHAAP-04 are described below. The first of these, the initial notice of LUCs, was completed on June 26, 2017. The June 26, 2017, Notice letters that were sent to relevant government officials (U.S. Army 2017) included a preliminary LUC boundary shown on **Figure 4-1**. The following actions will be undertaken to implement the LUCs for LHAAP-04:

- Finalize the boundary for the LUCs as a part of the RA.
 - Revise the boundary, if necessary, based on perchlorate results from the baseline groundwater sampling. The final boundary of the groundwater LUCs (prevent the use of groundwater contaminated above cleanup levels as a potable water source and prohibit access to the contaminated groundwater except for environmental monitoring and testing only); the remedial or monitoring system

LUCs (maintain the integrity of any current or future remedial or monitoring systems); and, the nonresidential land use LUC (restrict land use to nonresidential) will be reviewed during RA activities after an evaluation of the baseline data has been completed and revised if necessary.

- Survey the LUC Boundaries. The boundaries will be finalized after concurrence by USEPA and TCEQ, and the LUC boundaries will be surveyed by a Statelicensed surveyor. A legal description of the surveyed areas will be appended to the survey plat.
- Record the LUCs in Harrison County. The LUC plat, legal description and LUC restriction language will be recorded in the Harrison County Courthouse in accordance with TAC Title 30, §335.566.
- Notify the Texas Department of Licensing and Regulation of the groundwater LUCs. The Texas Department of Licensing and Regulation will be notified of the groundwater restrictions, which include the prohibition of water well installation for any purpose other than environmental monitoring and testing without prior approval from the Army, the USEPA, and the TCEQ. The survey plat, legal boundary and description of the groundwater restriction LUCs, in conjunction with a locator map, will be provided in hard and electronic copy.
- Provide notice of the LUCs with the revised LUC boundary.
 - Prepare the notice of the groundwater and soil (surface and subsurface) contamination and any land use restrictions referenced in the ROD. The notice will consist of a brief description of the contaminants in groundwater and soil, a written description of the LUCs and a figure depicting the revised LUC boundary.
 - Transmit the notice to federal, state, and local governments involved at this site and the owners and occupants of the properties subject to those use restrictions and LUCs within 90 days of RACR acceptance by the regulators. The notices will be sent to federal, state and local officials including: both U.S. Senators, U.S. Congressman (Texas District 1), State Senator (District 1), State Representative (District 9), Harrison County Judge, Harrison County Commissioner Precinct 1, City of Uncertain Mayor, Leigh Water Supply Corporation Board Members, Caddo Lake Water Supply Corporation Board of Directors, and the Caddo Lake National Wildlife Refuge Manager.

Contract No. W9128F-13-D-0012, Task Order No. W9128BV17F0150 • Draft Final • Rev 0 • April 2019

4.2 Maintenance and Monitoring Requirements

The LUCs will be maintained in place as follows:

- The LUCs restricting the use of groundwater to environmental monitoring and testing only and the LUC restricting land use to nonresidential will remain in place until the levels of COCs (i.e., including all hazardous substances, pollutants, and contaminants found at the Site at cleanup levels as listed in Table 2-3 of the ROD) in surface and subsurface soil and groundwater allow for unlimited use and unrestricted exposure.
- The LUC to maintain the integrity of any current or future remedial or monitoring systems will remain in place until groundwater cleanup levels of COCs (i.e., including all hazardous substances, pollutants and contaminants found at the Site at cleanup levels as listed in Table 2-3 of the ROD) are met.

Remedial or Monitoring System LUCs include physical components that require repair and maintenance. These are described in **Section 8.0**. The RAO and Extraction System Inspection and Maintenance Checklists is provided in **Appendix E**.

The administrative maintenance required to ensure the LUCs remain in place and effective until the cleanup levels of the COCs are at levels that allow unrestricted use and unlimited exposure are:

- Annual field inspections of the site to confirm that no violations of the LUCs have occurred. Documentation of the inspection will be included in the Inspection and Maintenance Checklist (see **Appendix E**).
- Annual certifications that no LUC-restricted activities have been authorized and that site conditions and use are consistent with the LUCs. The Certification Form is presented in **Appendix E**.
- Periodic transmittal of a LUC Notice to federal, state, and local authorities and to
 owners and occupants of LHAAP-04. The notice will include the groundwater and
 soil (surface and subsurface) contamination and any land use restrictions
 referenced in the ROD, a written description of the LUCs and a figure depicting
 the LUC boundaries. The transmittal will coincide with each Five-Year Review
 and will be documented in the report.
- The final LUC RD appendix of the RACR will be added to the Comprehensive LUC Management Plan and the plan will be provided to the owner or occupant of LHAAP-04.

APTIM FEDERAL SERVICES, LLC

The U.S. Army will address LUC problems within its control that are likely to impact remedy integrity and shall address problems as soon as practicable.

4.3 LUC Inspection and Monitoring

Beginning with finalization of this RD/RAWP and approval of the Inspection form and the Annual Certification Form, the U.S. Army will undertake inspections and certify continued compliance with the LUC objectives. The U.S. Army, or the transferee after transfer, will retain the LUC Inspection and Certification documents in the project files for incorporation into the five-year review reports, and these documents will be made available to USEPA and TCEQ upon request. In addition, should any violations be found during the certification, the U.S. Army will provide to USEPA and TCEQ, along with the document, a separate written explanation indicating the specific violations found and what efforts or measures have or will be taken to correct those violations. The need to continue inspections and certifications will be revisited at five-year reviews.

4.3.1 Notice of Planned Property Conveyances

Contract No. W9128F-13-D-0012, Task Order No. W9128BV17F0150 • Draft Final • Rev 0 • April 2019

Upon transfer of Army-owned property, the Army will provide written notice to the transferee of the LHAAP-04 groundwater contamination and any land use restrictions. Within 15 days of transfer, the U.S. Army will provide written notice to USEPA and TCEQ of the division of implementation, maintenance, and enforcement responsibilities unless the information has already been provided in the LUC RD. The notice will describe the mechanism by which the LUC will continue to be implemented, maintained, inspected, reported, and enforced. Upon transfer, such responsibilities may shift to the transferee via appropriate provisions placed in the Environmental Condition of Property (ECP) or other environmental document for transfer. Although the U.S. Army may transfer responsibility for various implementation actions, the U.S. Army will also retain ultimate responsibility for the remedy integrity. This means that the U.S. Army is responsible for addressing substantive violations of the LUC performance objectives that would undermine the U.S. Army's CERCLA remedy. The U.S. Army also will be responsible for incorporating RD information and outlining the transferee's LUC obligations into property transfer documentation. In the event property is transferred out of Federal control, the LUCs relating to property and groundwater restrictions shall be recorded in the deed and shall be enforceable by the United States and the state of Texas.

4.3.2 Opportunity to Review Text of Intended Land Use Controls

The U.S. Army will provide a copy of the groundwater and land use restriction notification to TCEQ for review and approval prior to its recordation in Harrison County. USEPA will also receive a copy for review. The U.S. Army will produce an ECP or other environmental document for transfer of LHAAP-04, but before executing transfer, the U.S. Army will provide USEPA and TCEQ with a copy of the ECP or other environmental document for transfer so

APTIM FEDERAL SERVICES, LLC

that they may have reasonable opportunity, before transfer, to review all LUC-related provisions.

4.3.3 Notification Should Action(s) which Interfere with Land Use Control Effectiveness be Discovered Subsequent to Conveyance

Should the U.S. Army discover after conveyance of the site any activity on the property inconsistent with the LUC performance objectives, the U.S. Army shall notify USEPA and TCEQ within 72 hours of such discovery. Consistent with **Section 4.3.5** below, the U.S. Army will then work with USEPA, TCEQ and the transferee to correct the problem(s) discovered. This reporting requirement does not preclude the U.S. Army from taking immediate action pursuant to its CERCLA authorities to prevent any perceived risk(s) to human health or the environment.

4.3.4 Land Use Control Enforcement

Should the LUC remedy reflected in this RD fail, the U.S. Army will coordinate with USEPA and TCEQ to ensure that appropriate actions are taken to reestablish its protectiveness. These actions are taken to reestablish its protectiveness. These actions may range from informal resolutions with the USFWS or its lessee, to the institution of judicial action against non-federal third parties. Alternatively, should the circumstances warrant such, the U.S. Army could choose to exercise its response authorities under CERCLA. Should the U.S. Army become aware that any future owner or user of the property has violated any LUC requirement over which a local agency may have independent jurisdiction, the U.S. Army may notify those agencies of such violation(s) and work cooperatively with them to re-achieve owner/user compliance with the LUC.

4.3.5 Modification or Termination of Land Use Controls

The LUCs shall remain in effect until such time as the U.S. Army and USEPA agree that the concentrations of perchlorate in groundwater have met cleanup levels and allow unrestricted use. When this occurs, the LUC will be terminated as needed. The decision to terminate the LUC will be documented consistent with the NCP process for post-ROD changes, potentially including an Explanation of Significant Difference or a Remedial Action Completion Report. If the property has been transferred and a determination by the U.S. Army and USEPA has been made to terminate the LUC, the U.S. Army shall provide to the owner of the property an appropriate release for recordation pertaining to the site and will also timely advise other local stakeholders of the action.

Contract No. W9128F-13-D-0012, Task Order No. W9128BV17F0150 • Draft Final • Rev 0 • April 2019

Contract No. W9128F-13-D-0012, Task Order No. W9128BV17F0150 • Draft Final • Rev 0 • April 2019

This page intentionally left blank.

5.0 IN-SITU BIOREMEDIATION WORK PLAN

ISB will be conducted at LHAAP-04 to remediate groundwater impacted with perchlorate. The Proposed Injection Plan for LHAAP-04 is shown on **Figure 5-1**.

The plume geometry and proposed injections have been developed using the basis and details of the RD in **Section 3.0**. The specific formulation of EVO used to develop the RD is EDS-ERTM. If EDS-ERTM is not available at the time the injections are ready to proceed, an equivalent EVO product will be used, and the volumes of EVO will be adjusted if the EVO content is less than the 100% in EDS-ERTM. Details of the pre-mobilization, mobilization, injection, and demobilization field activities are provided in the following sections.

5.1 ISB Injection Plan

To treat the perchlorate impacted groundwater in the shallow groundwater aquifer, a biogrid will be installed by injecting EDS-ERTM or an equivalent EVO product and nutrients, into 25 DPT points as shown in **Figure 5-1**. **Table 5-1** specifies the volume of amendment mixture to be injected at each injection point.

In order to minimize the potential for dispersion of the perchlorate plume due to injections, the outermost ring of injection locations will be injected first, beginning at the downgradient edge (injection locations 4, 8, 14, 20-25, 19, and 13), and injections will proceed counter clockwise and inward, finishing in the center of the perchlorate plume.

5.2 **Pre-Mobilization Activities**

5.2.1 Permitting

No permitting is required prior to the commencement of field work.

5.2.2 Notification

TCEQ and USEPA will be notified two weeks in advance of commencement of fieldwork activities.

5.2.3 Utility Clearance

Utility location and clearance for intrusive activities will be conducted prior to drilling as follows:

The site health and safety officer will:

- Prepare a map indicating the area(s) where intrusive activity is planned to occur.
- Perform the necessary reviews.

- Contact the Texas Excavation Safety System, Inc. utility notification service by calling 811 or 800 892 0123 or using their online submittal system. This notification is to be made a minimum of three working days prior to the initiation of intrusive activity (excluding Saturdays, Sundays, and holidays), but not greater than 14 days.
- Verify that all underground installations have been located, physically marked, and then noted on the map. If needed, a third-party location service will be used.
- Mark all overhead utilities with kilovolts rating on the map. It is not anticipated that the existing overhead lines will impact the proposed injection location layout.
- Notify the appropriate agencies, contracting officer's representative, and property owners (when applicable).
- Confirm that utility clearance is complete and documented.

A safety meeting shall be held, and a job safety analysis shall be completed by all personnel who are involved in the intrusive activities prior to initiating work.

5.3 Site Activities

Contract No. W9128F-13-D-0012, Task Order No. W9128BV17F0150 • Draft Final • Rev 0 • April 2019

Once the premobilization activities are completed, the field crew, DPT crew, and injection equipment will mobilize to the site to perform the following activities.

5.3.1 Baseline Sampling

Baseline samples will be collected from all of the LHAAP-04 monitoring wells prior to the implementation of injections to characterize the perchlorate concentrations and geochemical conditions in the shallow zone. As discussed in the Final ROD (AECOM 2016) the fire station well will also be sampled during the baseline to determine if additional sampling of the well will be needed during the post-injection monitoring discussed in **Section 7.0**. The baseline sampling results will be compared to sample results collected post-ISB injections. The monitoring network is discussed in **Section 7.0** and will be finalized in the RACR after the baseline sampling has been completed.

5.3.2 Injection Activities

- 1. Mobilize materials, equipment, mixing tanks, and labor for injections
- 2. Set up traffic signage and controls as needed
- 3. Layout injection locations and clear DPT injection points (Section 5.5.1.1)
- 4. Core concrete/asphalt at injection points, if needed, and adjust any points if obstructions are found and push rods to the desired injection interval (Section 5.4)

REMEDIAL DESIGN AND REMEDIAL ACTION WORK PLAN, LHAAP-04 FORMER PILOT WASTEWATER TREATMENT PLANT

- 5. Setup amendment, equipment, and materials onsite
- 6. Begin preparing amendment solution for injection a day before planned injections. Preparation of amendment solution will be a continual activity (Section 5.5.1.2)
- Inject amendments following the sequencing described above using DPT (Section 5.1 and 5.5.2)
- 8. Record injection intervals and volumes during injections (Appendix D)
- 9. Once injection is complete at a DPT injection point, abandon point (Section 5.4)
- 10. Record DPT injection point locations with global positioning system (GPS)

5.3.3 Post Injection Activities

After injections, the site will be restored as needed and the injection personnel and equipment will be demobilized. Groundwater sampling and reporting will be conducted as described in **Section 7.0**.

5.4 **DPT Drilling**

Drilling will utilize DPT rigs for in situ injections through a probe with a 4-foot injection screen interval. The injections will be performed over an 8-foot injection interval using a top down approach, unless the lithology and field conditions cause persistent jamming or clogging of the injection tooling; in which case a bottom up approach will be used. The injection depth intervals will be adjusted to best treat the saturated zone identified in the nearest monitoring wells or soil boring where lithology was recorded (**Table 5-1**). A total of 25 points will be installed using a DPT rig in accordance with the procedures presented in the Installation-Wide Work Plan (IWWP) (Bhate 2018b). Each DPT point will be abandoned by filling with grout after injections are completed.

5.5 ISB Injection

Placement of DPT points is shown on **Figure 5-1**. **Table 5-1** provides the number of injection points, target depths, volumes of each amendment to be prepared, and target volumes to be injected. The calculations to determine the required volumes are based on the calculation sheets provided in **Appendix B**.

5.5.1 Preparation

5.5.1.1 Location Preparation

Prior to the ISB injection, the site will be cleared of aboveground hazards. A GPS device will be used to locate each injection point. After the third-party utility locator service has marked the underground utilities (if any), the locations will be reviewed to confirm that there are no injection points that will impact any utility. Additionally, the locations will be reviewed to

REMEDIAL DESIGN AND REMEDIAL ACTION WORK PLAN, LHAAP-04 FORMER PILOT WASTEWATER TREATMENT PLANT

determine if concrete coring is needed at a location. If the concrete is too thick to core at a location, the location will be adjusted as needed. If there are points that are affected by utility locations, the plan will be altered to relocate those points to avoid the utility, while still meeting the injection objectives. The final DPT injection point locations will be recorded with the GPS. Prior to drilling with the DPT at each point, the location will be excavated with a hand auger or post-hole digger to 5 feet to check for underground obstructions/utilities unless the location has been cleared by other means and an exemption authorized.

5.5.1.2 Amendment Preparation

There are various EVO formulations commercially available in the market. EDS-ERTM or an equivalent product will be used for injections. The ISB amendments will be mixed in 2,000 to 4,000-gallon mixing tanks. The tanks will be located at LHAAP-04 adjacent to the injection area. The amendment solution will be mixed prior to the day of injection. The potable water required for mixing will be obtained from the groundwater treatment plant (GWTP) or from an off-base fire hydrant and transported to the mixing tank in a water truck.

Steps required for preparation of ISB amendments are as follows:

- Approximately 24 hours prior to injection, the anaerobic solution will be prepared by adding the required volume of EVO, dilution water, and nutrients into the mixing tank. The same EVO amendment mixture is used for all injection locations. Microbes in the water will grow on a small amount of the carbon, and during respiration, they will use the available oxygen in the mixing tank, creating an anaerobic medium.
- When the solution has become anaerobic, based upon a DO meter reading of less than 1.0 milligrams per liter, the amendments will be injected. The amendment solution will be injected into the subsurface using an injection system, as shown on **Figure 5-2**.
- The injection volume for each point at an injection area along with the associated mass and volume of amendment are provided in **Table 5-1** and are based on 100% EVO oil by weight.

5.5.2 In Situ Injections

5.5.2.1 Injection System

An injection system will be used to allow for multiple DPT injections at a single time under low pressure (i.e., less than 40 psi). The injection system will include volume and pressure gauges, so amendment volume can be recorded for each injection location. The total volumes per well, injection pressures and gallon per minute will be tracked on paper and electronically using the Injection Log in **Appendix D**. The injection system will be connected to each DPT probe using hoses as shown in the schematic on **Figure 5-2**.

5.5.2.2 Monitoring During Injections

During the ISB injections, possible amendment surfacing (also called daylighting) may occur at the ground surface and will be monitored visually. Injection pressures will also be monitored since sudden reductions may be an indication of amendment loss into subsurface, possibly from fracturing induced by the injection or from a high-permeability zone. If daylighting on the surface is observed, injection rates will be reduced. If the reduction in pressure does not eliminate the daylighting, injections will be shut down and the remaining injection volume will be divided among the nearest injection locations to ensure the full design volume is injected in the area. If daylighting into a surface water feature is observed, the injection at that location will cease and necessary measure to capture the fluid released and to maintain the DO levels in the surface water will be implemented, if necessary. The remaining volume will be distributed to the other nearby injection locations. Total organic carbon (TOC) will be monitored in the performance wells during the injections using field methods and approximately 1 week after the completion of injections at an offsite laboratory as an indicator of distribution of the EVO (carbon). TOC will be used as an indicator of amendment distribution in the performance monitoring wells within the injection area (04WW04 and 04WW05).

5.5.3 Remediation Derived Waste Management

Remediation derived waste include the following:

- Groundwater generated from purging of wells prior to sampling
- Decontamination fluids

Contract No. W9128F-13-D-0012, Task Order No. W9128BV17F0150 • Draft Final • Rev 0 • April 2019

• Disposable protective clothing and supplies

Wastewater generated from equipment decontamination, well development, groundwater sampling, or other investigative and remedial activities will be stored in 55-gallon drums and transported to the GWTP at LHAAP-18/24 as specified in Section 3.8.2 of the IWWP (Bhate 2018b).

This page intentionally left blank.

6.0 POST-REMEDIAL MONITORING AND REPORTING

6.1 Monitoring Network

The monitoring network for the baseline sampling will include all of the LHAAP-04 monitoring wells and the fire station well. A subset of these wells will be selected in the RACR based on the results of the baseline sampling to be used to evaluate the performance of the LHAAP-04 remedy. Performance wells within the treatment area and at impacted locations near the treatment area will be analyzed for perchlorate and TOC, as well as geochemical parameters (sulfate, nitrate, nitrites, and alkalinity) and field parameters (DO, ORP, and ferrous iron). Perimeter wells surrounding the plume area will be used to evaluate plume stability and will be analyzed for perchlorate, DO, and ORP. The preliminary monitoring network wells are shown on **Figure 6-1** but may change based on the results of the baseline sampling.

6.2 Groundwater Sampling

Contract No. W9128F-13-D-0012, Task Order No. W9128BV17F0150 • Draft Final • Rev 0 • April 2019

Groundwater sampling events performed for LHAAP-04 will consist of:

- A baseline monitoring event conducted no more than 30 days prior to the initiation of ISB injections
- Performance monitoring that will be conducted quarterly for two years and used to evaluate the performance of the RA
- LTM monitoring that will be conducted semiannually in years 3 through 5 and annually thereafter until the groundwater perchlorate concentrations are below the PCL or the Army and regulators agree that less frequent sampling schedule is more appropriate

Areas around the wells will be cleared of vegetation and biohazards prior to each sampling event to protect the field staff. Low-flow groundwater sampling will be performed in accordance with Section 3.5 of the IWWP. Validated data packages will be provided at the monthly managers meeting as they become available.

6.2.1 Baseline Sampling

All of the LHAAP-04 monitoring wells along with the fire station well will be analyzed for the parameters shown on **Table 6-1** prior to initiating injections to allow establishment of baseline conditions against which the remedial performance can be evaluated.

REMEDIAL DESIGN AND REMEDIAL ACTION WORK PLAN, LHAAP-04 FORMER PILOT WASTEWATER TREATMENT PLANT

6.2.2 Evaluation of Injection Effectiveness

Groundwater samples will be collected for TOC analysis from the performance monitoring wells approximately one week after completion of the injections to evaluate effectiveness of the ISB injections.

6.2.3 Performance Monitoring Year 1 and Year 2

Wells included in **Tables 6-1** (as modified in the RACR) will be used to monitor the performance of ISB injections and the long-term stability of the plume. The process of biodegradation results in depletion of DO and ORP. Performance monitoring will be conducted to evaluate change in geochemical conditions and perchlorate concentrations and LTM monitoring will be conducted to verify that the plume extent is stable or shrinking. For the first two years post-injection the wells will be analyzed quarterly, with results provided in the monthly manager's meetings and summarized more fully in the Annual Remedial Action-Operation (RA-O) reports described in **Section 6.4**. The number of LTM wells may be reduced based on the RA-O monitoring results and recommendations made in RA-O Reports.

6.2.4 Long-Term Monitoring Years 3 through 5

After two years of quarterly performance monitoring, the monitoring will shift to semiannual LTM monitoring, and the analyte list for the performance wells will be reduced to perchlorate, TOC, and field parameters (DO and ORP). The number of LTM wells may be reduced based on the RA-O monitoring results and recommendations made in RA-O Reports. Monitoring will be discontinued with regulator concurrence after perchlorate concentrations in all wells drop below the PCL. The need for any additional LTM will be discussed in the next Five-Year Review.

6.2.5 Long-Term Monitoring Beyond Year 5

LTM will continue annually after Year 5, if needed, using a monitoring network and analyte list established in the Year 5 RA-O Report based on the ongoing monitoring data.

6.3 Response Action Completion Report

A RACR will be submitted upon implementation of the ISB injection and LUC work plans to document activities performed to complete the RA. Performance monitoring and LTM monitoring results will be included in RA-O Reports.

6.4 Annual RA-O Reports

An Annual RA-O Report will be prepared at the end of each year post-injection to present groundwater monitoring results. The Year 1 and Year 2 Annual RA-O Reports will include an evaluation of the effectiveness of treatment for LHAAP-04. Wells within the plume areas will be evaluated for effectiveness of treatment and wells surrounding the plume will be used to

evaluate plume stability. The report will provide recommendations if possible for reducing the number of monitoring wells to be included in the monitoring program and/or frequency of monitoring events. The Annual RA-O Report will also include the annual LUC inspection, and monitoring system operation and maintenance (O&M) discussion.

6.4.1 Remedy Evaluation

Remedial performance will be evaluated using two primary LOEs to determine if the remedy is operating properly:

- Plume stability (i.e., plume concentrations are declining in the performance wells, and the plume is not expanding in area as demonstrated by downgradient monitoring wells)
- Reducing conditions conducive for the degradation of perchlorate are present within the treatment area

Follow-up injections (Section 6.5) may be needed if the remedy is determined to not be performing, although reinjections are not expected to be needed within the 3 to 5-year lifespan of the EVO mixture selected. Nonetheless, the decision for reapplication of organic carbon will be made based on groundwater monitoring results.

6.5 Follow-up Injection Criteria

Contract No. W9128F-13-D-0012, Task Order No. W9128BV17F0150 • Draft Final • Rev 0 • April 2019

Three criteria for determining the potential need to reinject are:

- Contaminant concentrations in groundwater are not trending downward at a rate indicative of achieving the cleanup level in approximately 6 years
- Depletion of the organic carbon to below 20 mg/L
- ORP increases above -50 mV

If one or more of the criteria described above are met for two consecutive sampling events in the same sampling location, the need for additional injections in that area will be evaluated.

This page intentionally left blank.

7.0 SCHEDULE

Table 7-1 shows the estimated duration for each major site activity and timeline. Weather and unknown site conditions could affect this schedule.

This page intentionally left blank.

REMEDIAL DESIGN AND REMEDIAL ACTION WORK PLAN, LHAAP-04 FORMER PILOT WASTEWATER TREATMENT PLANT

8.0 OPERATION AND MAINTENANCE PROCEDURES

Some components of the final remedy at LHAAP-04 require O&M and those O&M activities are described in this section, along with other routine maintenance activities. The remedy components that require O&M are maintenance of the groundwater monitoring system (this would include all wells that serve some purpose) and maintenance of the LUCs. These activities will be conducted annually unless recommended otherwise during a five-year review. An RA-O Inspection and Maintenance Checklist is presented in **Appendix E**.

8.1 Maintenance of the Current or Future Groundwater Monitoring System

The groundwater monitoring system is comprised of a network of monitoring wells used to implement ISB, monitor progress of the remedial activities, and determine the magnitude and extent of COCs. This system of wells will be inspected and maintained as part of the annual inspection and maintenance program. The monitoring wells will be inspected for the integrity of the pad, bollards, surface casing, and well markings, the presence and accumulation of silt in the well screen, the presence and integrity of a locking mechanism, positive drainage around the well pad, the presence of encroaching vegetation, such as tree roots and weeds, and the presence of biological hazards, such as ant mounds and bee nests. Maintenance activities will be performed as needed and could include replacement of the pads and well markings, resurfacing/painting the well casing and bollards, and redevelopment of the wells. Photo documentation of well conditions will be collected during inspection and maintenance activities. The annual inspection and maintenance activities will be documented in the Annual RA-O reports.

8-1

This page intentionally left blank.

REMEDIAL DESIGN AND REMEDIAL ACTION WORK PLAN, LHAAP-04 FORMER PILOT WASTEWATER TREATMENT PLAN

9.0 REFERENCES

AECOM. 2016. Final Record of Decision LHAAP-04, Longhorn Army Ammunition Plant, Karnack, Texas.

Bhate Environmental Associates, Inc. (Bhate). 2018a. Draft Technical Memorandum – Supplemental Groundwater Investigation at LHAAP-04, Longhorn Army Ammunition Plant, Karnack, Texas.

Bhate. 2018b. Installation-Wide Work Plan, Longhorn Army Ammunition Plant, Karnack, Texas.

Jacobs Engineering Group, Inc. (Jacobs). 2002. Remedial Investigation Report Addendum for the Group 4 Sites, Remedial Investigation Report, Sites 04, 08, 67, and Hydrocarbon Study, Longhorn Army Ammunition Plant, Karnack, Texas. Oak Ridge, Tennessee. February.

Shaw Environmental, Inc. (Shaw). 2007. *Final Modeling Report, Derivation of Soil and Groundwater Concentrations Protective of Surface Water and Sediment, Revision 1, Longhorn Army Ammunition Plant, Karnack, Texas.* February.

Shaw. 2011. Final Completion Report Non-Time-Critical Removal Action, Longhorn Army Ammunition Plant, Karnack, Texas. Houston, Texas. August.

Shaw. 2012. Final Feasibility Study Report for LHAAP-04, Former Pilot Wastewater Treatment Plant, Karnack, Harrison County, Texas. May.

U.S. Department of the Army (U.S. Army). 2004. *Memorandum of Agreement Between the Department of the Army and the Department of the Interior for the Interagency Transfer of Lands at the Longhorn Army Ammunition Plant for the Caddo Lake National Wildlife Refuge, Harrison County, Texas.* Signed by the Department of the Interior on April 27, 2004, and the U.S. Army on April 29, 2004.

U.S. Army. 2017. *Preliminary Notice of Land Use Controls*. Longhorn Army Ammunition Plant, Karnack, Texas. June.

This page intentionally left blank.

Tables

Table 2-1	
Monitoring Well Completion Sum	mary

Well ID	Zone	Completion Date	Northing ^a	Easting ^a	Ground Surface Elevation (ft amsl) ^{b,c}	Top of Casing Elevation (ft amsl) ^b	Well Depth (ft bgs) ^c	Top of Screen (ft bgs) ^c	Bottom of Screen (ft bgs) ^c	Well Construction
04WW01	Shallow	29-Nov-00	6958971.173	3305911.786	208.78	212.51	24	13	23	4" SS
04WW02	Shallow	29-Nov-00	6959284.718	3305973.89	212.80	216.70	23	13	23	4" SS
04WW03	Shallow	29-Nov-00	6959561.995	3306189.503	212.38	215.93	25	13	23	4" SS
04WW04	Shallow	18-Aug-10	6959126.04	3305944.13	211.30	214.10	27	8	18	2" PVC
04WW05	Shallow	18-Aug-10	6959066.75	3305863.17	211.00	213.70	26.5	16	26	2" PVC
04WW06	Shallow	12-Dec-17	6859225.38	3305871.99	212.52	215.63	25	15	25	4" PVC
04WW07	Shallow	12-Dec-17	6859038.63	3306006.11	211.66	214.64	20	10	20	4" PVC
04WW08	Intermediate	14-Dec-17	6959148.15	3305963.41	212.07	214.82	41	31	41	10" PVC Surface Casing to 23', 4" PVC well
04WW09	Shallow	15-Jan-19	6959090.67	3305897.71	211.47	214.61	20	10	20	4" PVC
04WW10	Shallow	15-Jan-19	6959041.73	3305928.94	210.40	213.67	19	9	19	4" PVC
04WW11	Shallow	16-Jan-19	6959032.36	3305839.02	209.31	212.01	15.5	5.5	15.5	4" PVC
LHSMW02	Shallow	20-Aug-94	6959133.73	3305705.23	213.75	215.43	16	5.5	15.5	4" PVC riser, 316 SS screen
LHSMW01	Shallow	19-Aug-94	6959159.79	3306087.69	211.19	214.43	16	4.5	14.5	4" PVC riser, 316 SS screen

Notes:

^a Northing and Easting Coordinates are Texas State Plane Coordinate System, North Central Zone (4202), 1983 North American Datum (NAD 83).

^b Survey elevations are North American Vertical Datum of 1988 (NAVD 88).

 $^{\rm c}$ $\,$ The ground surface elevation is measured at the soil surface adjacent to the well pad.

ID - identification

ft amsl - feet above mean sea level

ft bgs - feet below ground surface

PVC - polyvinyl chloride

SS - stainless steel

Table 5-1Injection Locations and Amendment Volumes

	Amendi	ment Volume per L	ocation		
DPT Location	Gallons of EVO (EDS-ER or Equivalent)	Gallons of Nutrients (DAP)	Gallons of Water	Nearest Monitoring Well	DPT Injection Depths (ft bgs)
04DPT03, -06, and -07	15	6	1,463	04WW05	12 - 20
04DPT01, -02, -04, and -05	15	6	1,463	04WW09	6 - 14
04DPT08, -09, -10, -11, -12, -13, -14, -17, -18, -19, -20, -24, and -25	15	6	1,463	04WW10	7 - 15
04DPT15, -16, -21, -22, and -23	15	6	1,463	04WW07	7 - 15

Notes:

ft bgs - feet below ground surface

DAP - Diammonium phosphate

DPT - direct-push technology

evo - emulsified vegetable oil

Table 6-1Proposed Monitoring Network Locations and Analyses

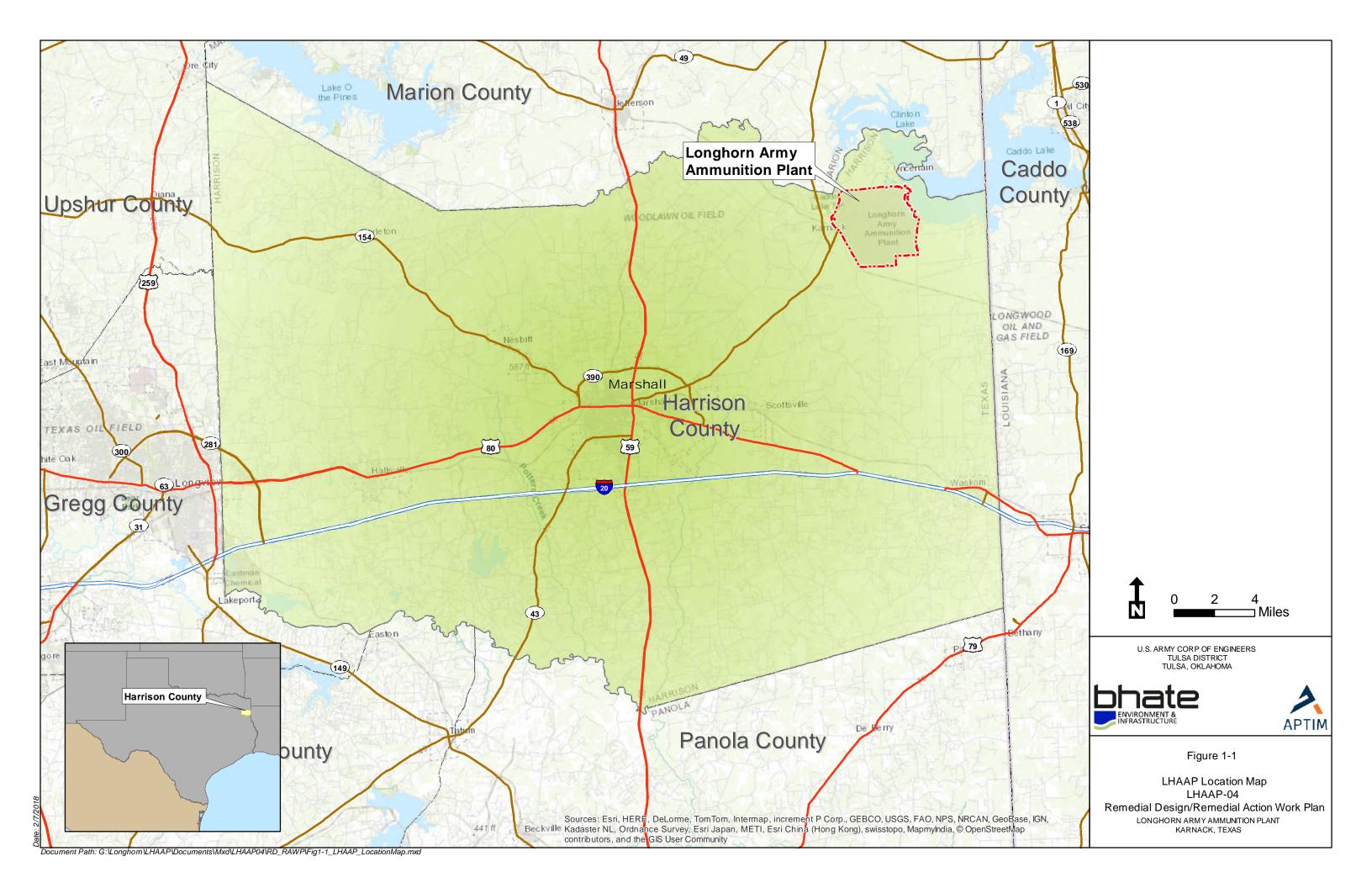
										Pro	pose	d An	alyse	S									
	Primary Rationale for Well Selection		Baseline					1 Week Post Injection ^a						LTM – Years 3 thru 5 (Semiannual)									
Monitoring Location			DO (field reading)	ORP (field reading)	pH (field reading)	Ferrous Iron (field reading)	Alkalinity (2320B)	Anions ^b (E300.0)	TOC (SW9060)	TOC (SW9060)	Perchlorate (314.0)	DO (field reading)	ORP (field reading)	pH (field reading)	Ferrous Iron (field reading)	Alkalinity (2320B)	Anions ^b (E300.0)	TOC (SW9060)	Perchlorate (314.0)	DO (field reading)	ORP (field reading)	pH (field reading)	TOC (SW9060)
04WW05	Performance data within the treatment zone	✓	 ✓ 	~	✓	~	✓	✓	✓	\checkmark	~	~	✓	~	✓	✓	~	✓	✓	✓	✓	✓	✓
04WW07	Performance data within the treatment zone	~	~	~	~	~	✓	~	~	✓	~	~	✓	~	~	~	~	~	✓	~	✓	~	~
04WW09	Performance data within the treatment zone	~	~	~	~	~	✓	~	~	✓	~	~	✓	~	~	~	~	~	✓	~	✓	~	~
04WW10	Performance data within the treatment zone		~	~	~	~	~	~	~	✓	~	~	✓	~	~	~	~	~	✓	~	✓	~	~
04WW01	Downgradient well for measuring plume stability	~	~	~	~						~	~	~	~					✓	~	~	~	
04WW04	Upgradient well for measuring plume stability	~	~	~	~						~	~	~	~					✓	✓	✓	~	
04WW06	Upgradient well for measuring plume stability	~	~	~	✓						\checkmark	~	✓	~					\checkmark	~	~	~	
04WW11	Downgradient well for measuring plume stability	~	~	~	~						~	~	~	~					✓	~	~	~	
LHSMW01	Crossgradient well for measuring plume stability	~	~	~	~						~	~	~	~					√	~	~	~	
LHSMW02	Crossgradient well	~	~	~	~																		
04WW02	Upgradient well	~	✓	✓	~																		
04WW03	Upgradient well	~	~	~	~						The	need	for co	ntinue					s will be samplir	e deterr	nined b	ased c	on the
04WW08	Intermediate Zone well	~	~	✓	~										1000				Jampin	·9·			
Fire Station Well	Downgradient well	✓	✓	~	✓																		

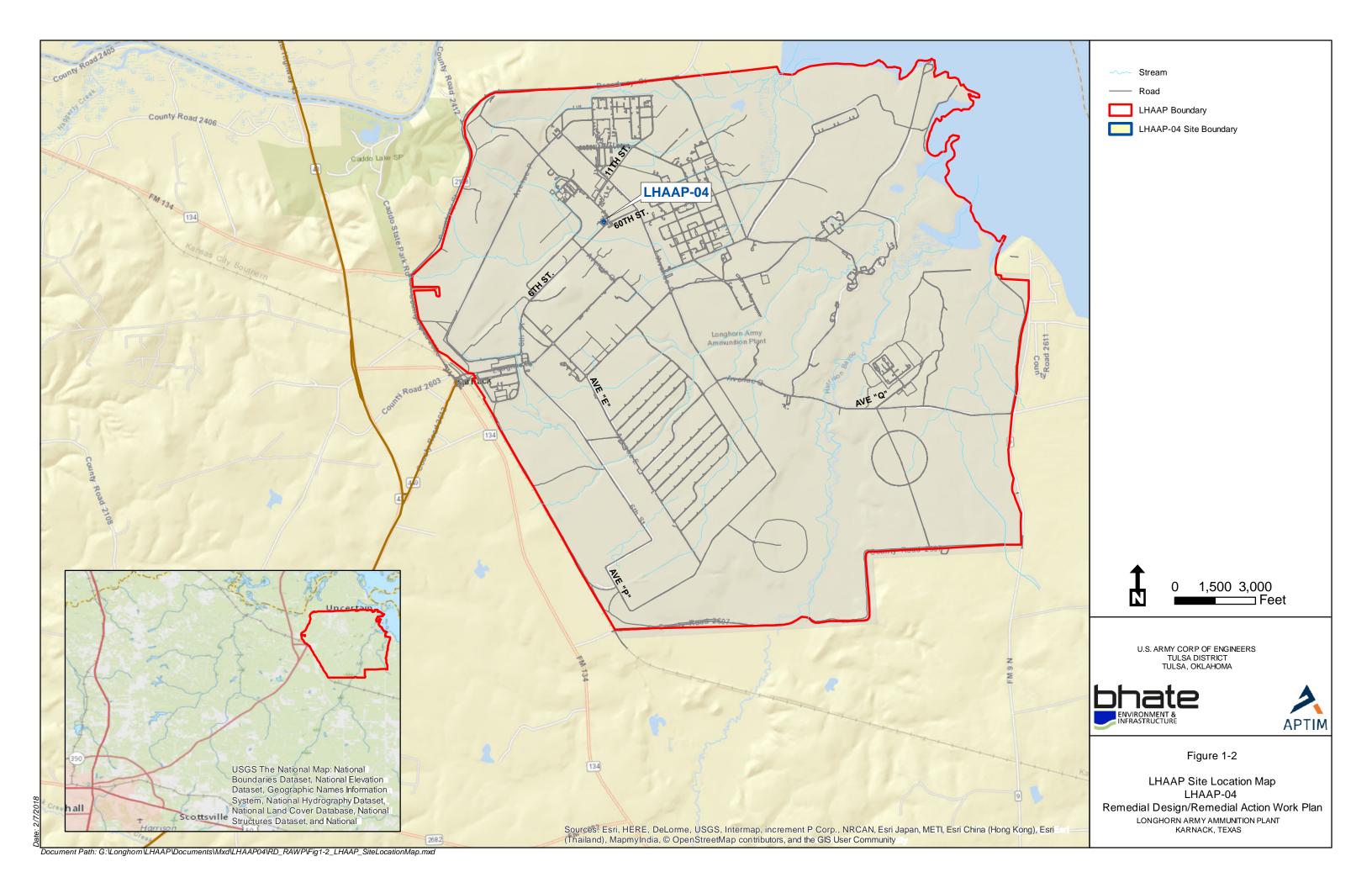
Notes:

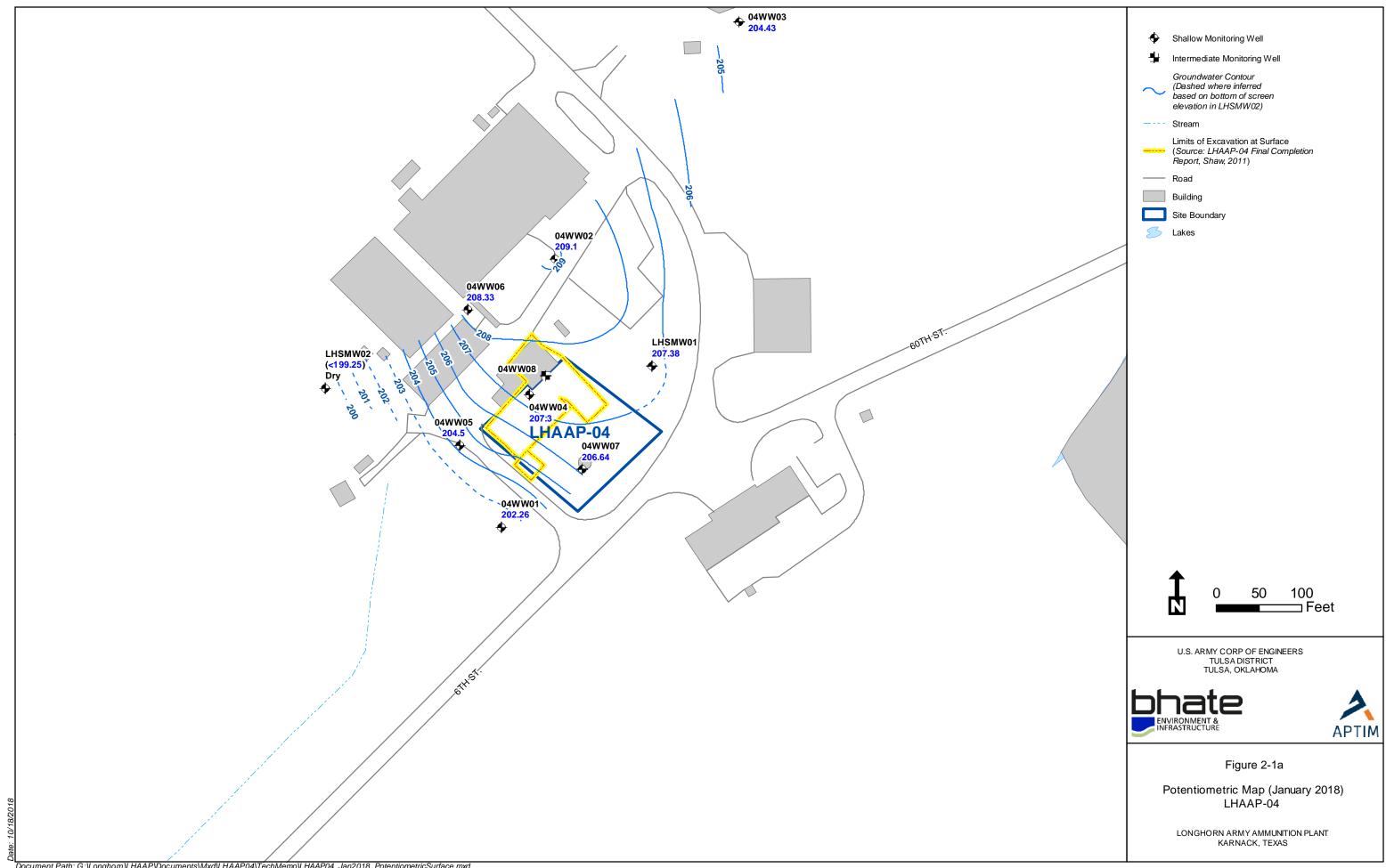
^a To be conducted approximately 7 days after the completion of substrate injection. A second sample will be collected between 30 and 45 days if the results from the first event were inconclusive.

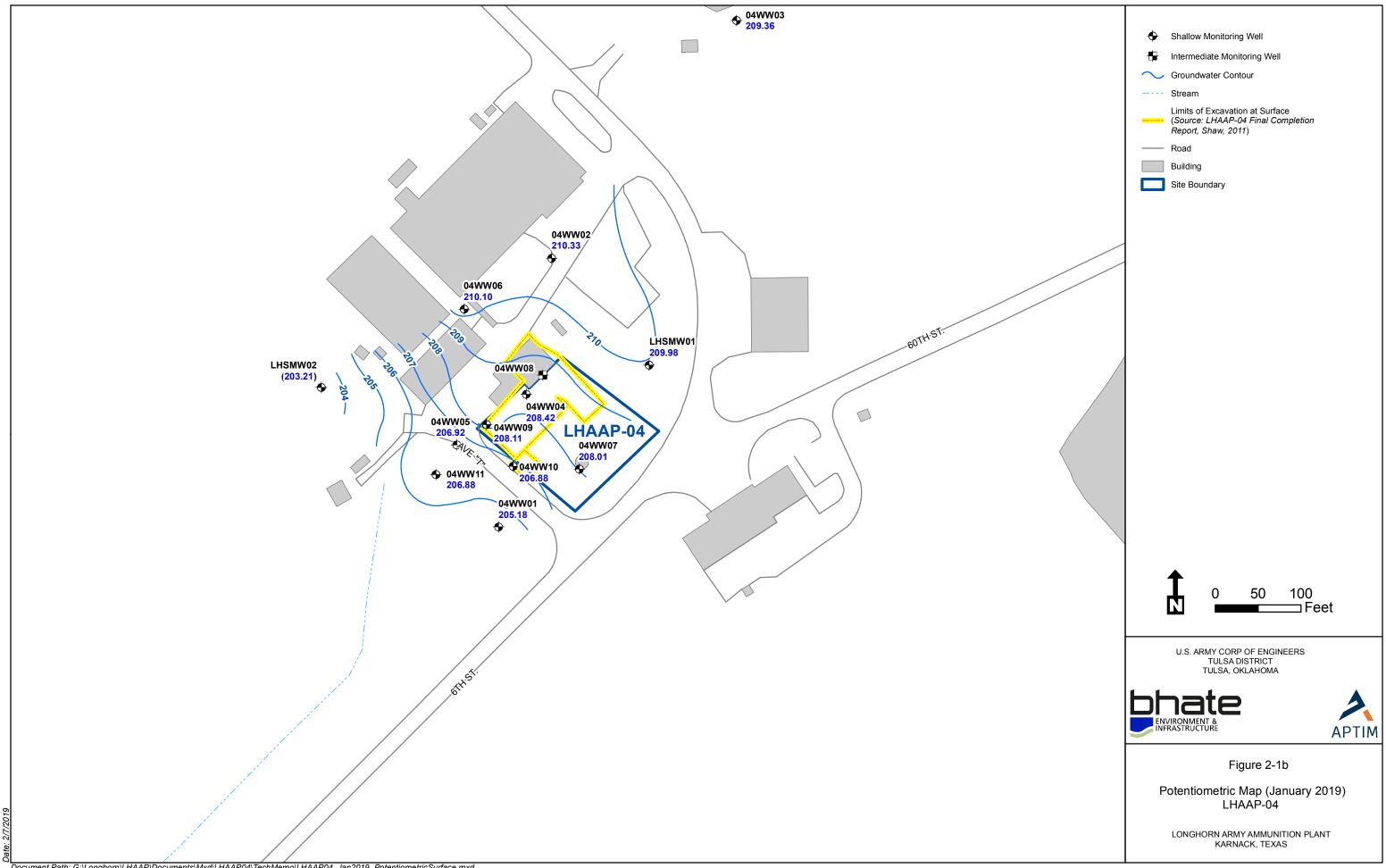
^b Anions include nitrate, nitrites, and sulfate.

 \checkmark Indicates that sample will be collected and analyzed for the listed analyte.

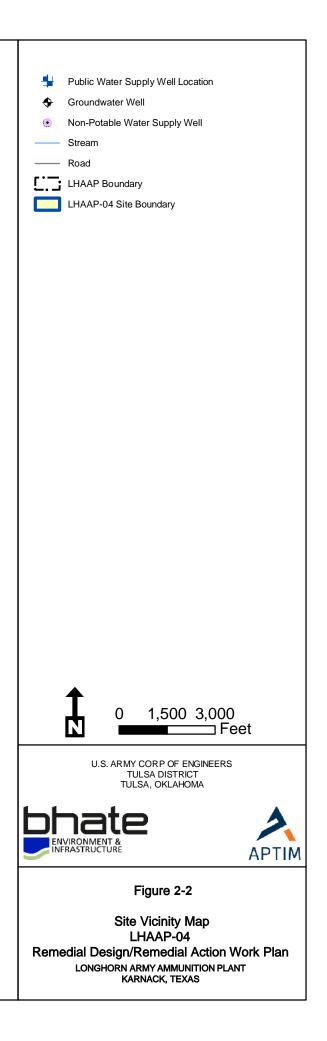

Aptim Federal Services, LLC

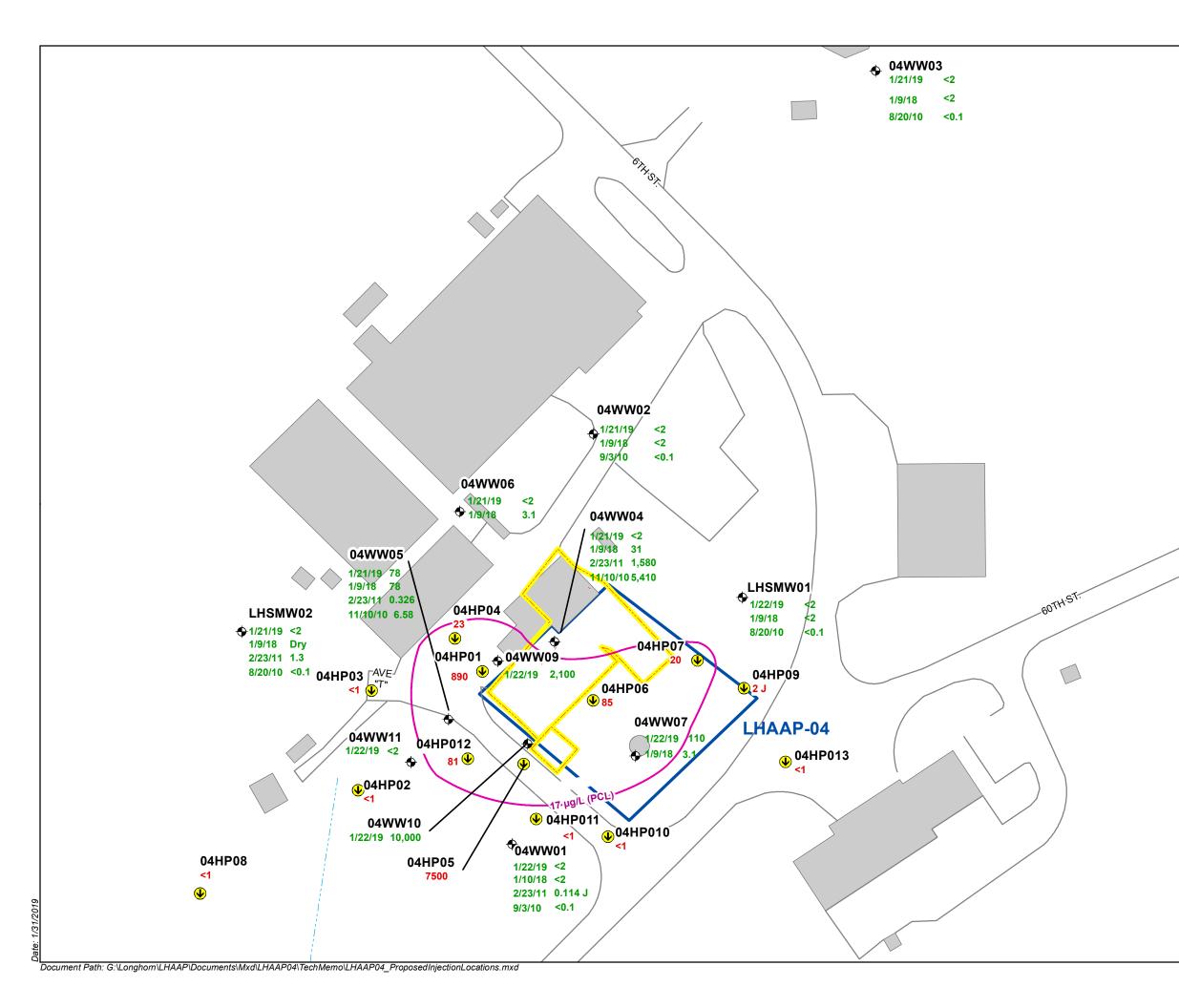


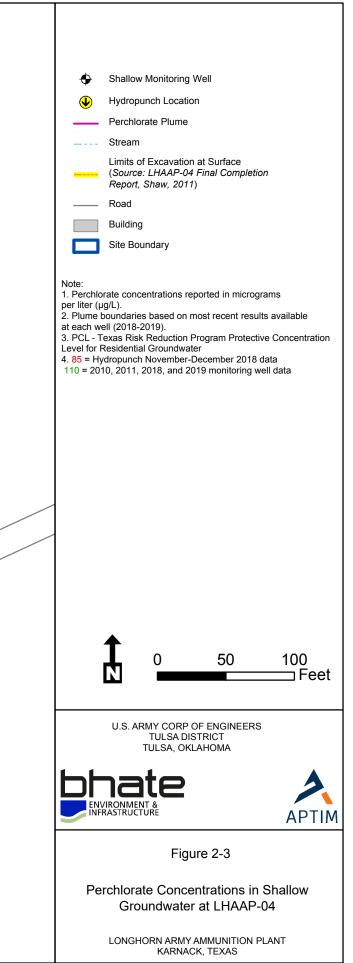

Activities		Duration
Provide Injection Information to State		30
Baseline Sampling and Gauging		3
Utility Clearance		1
Mobilization / Site Set-up for Injections		1
Clear Injection Locations		2
Conduct Injection		9
Demobilization		1
	Total Number of Days	47

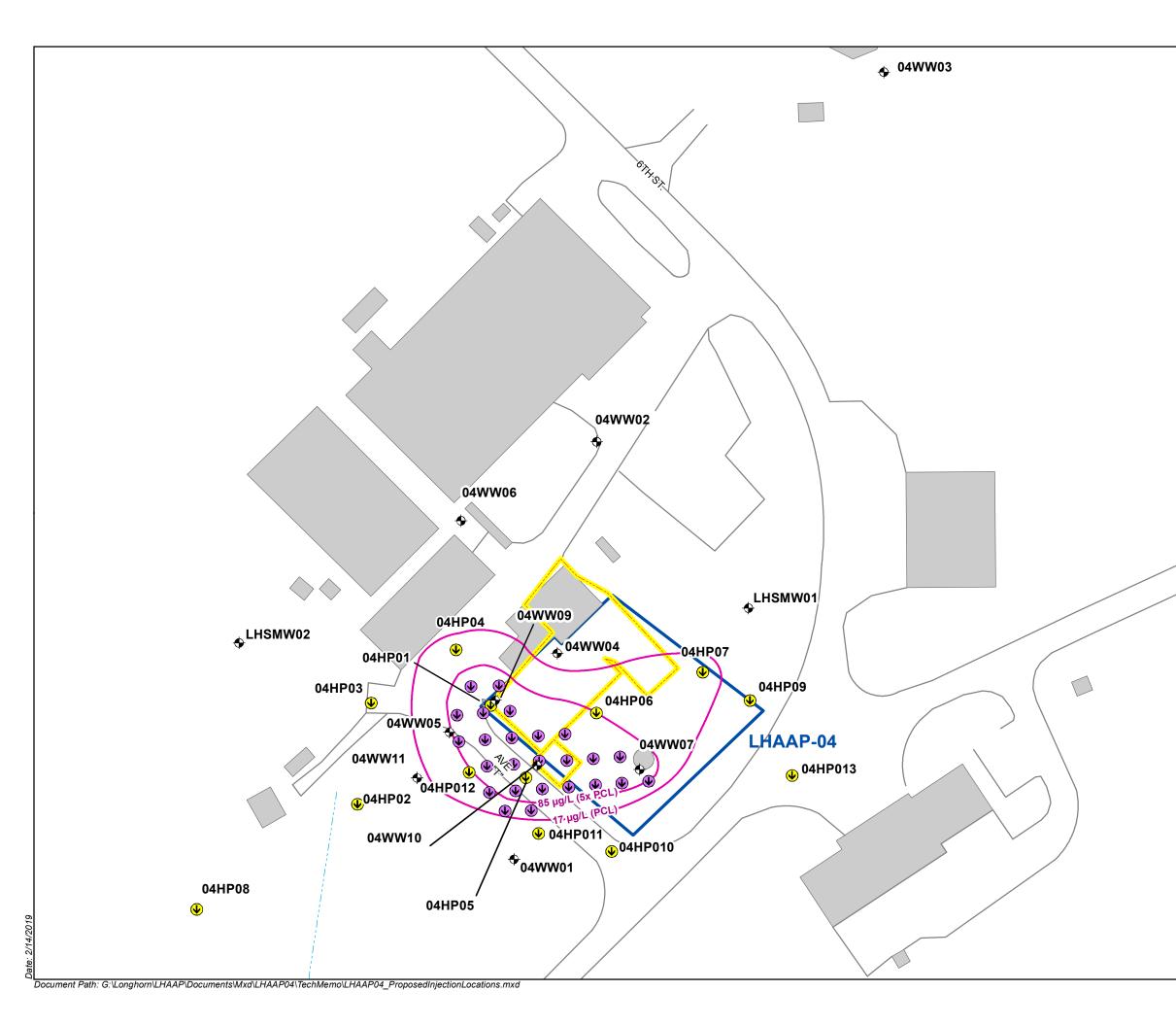

Table 7-1Schedule for Major Site Activities

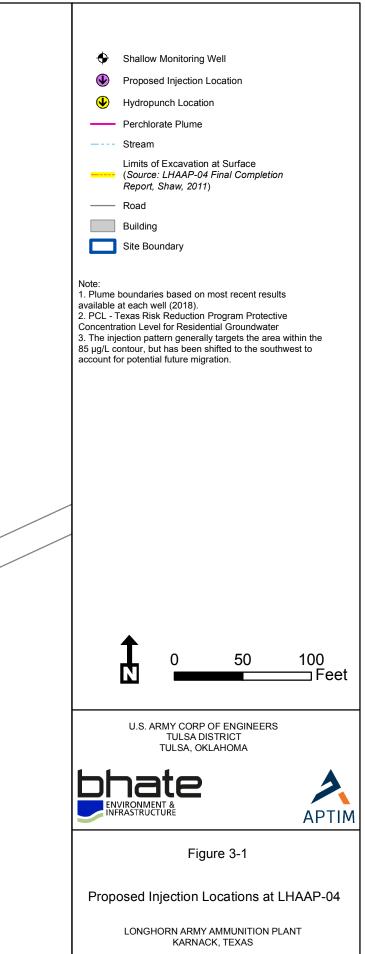

Figures

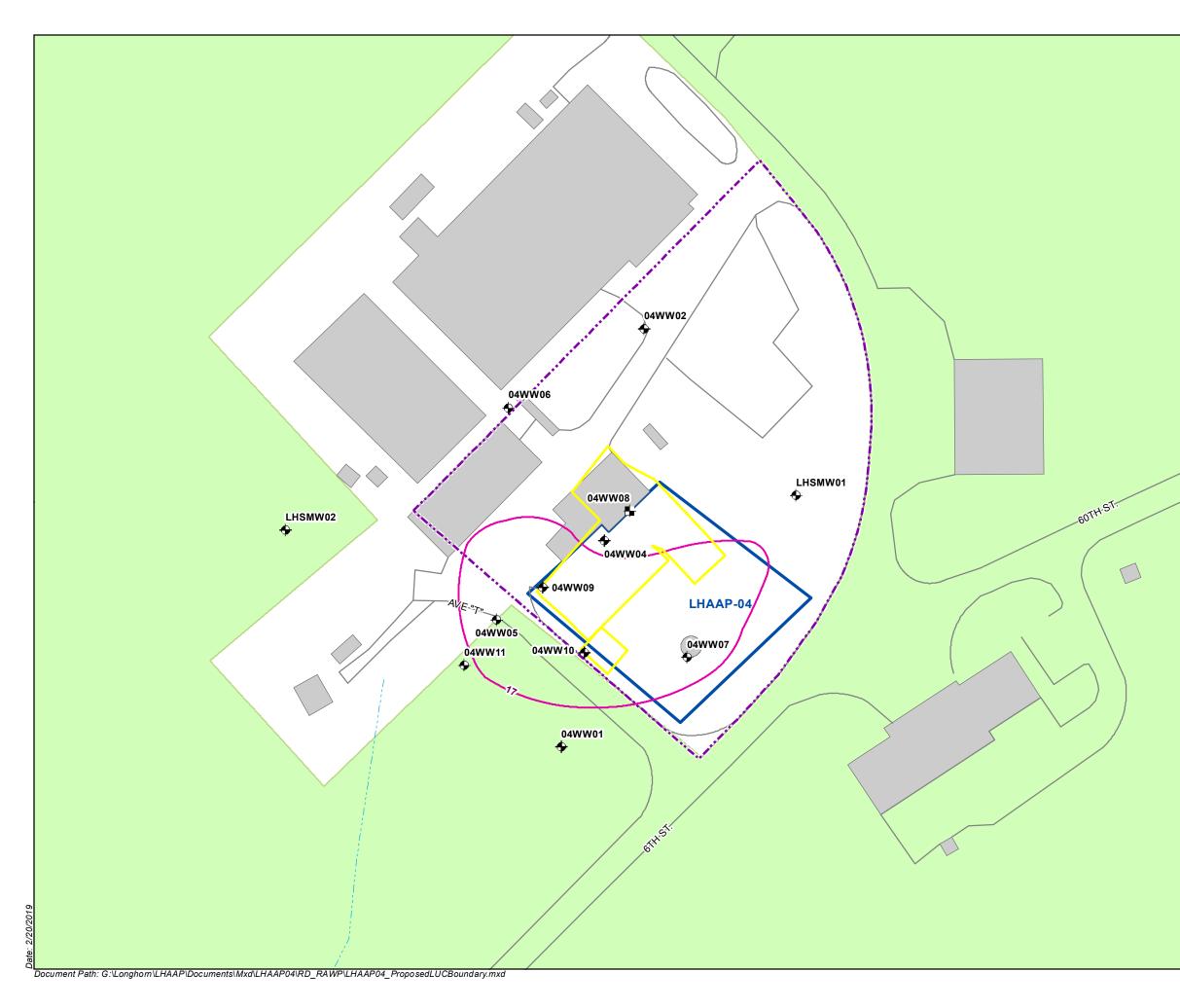


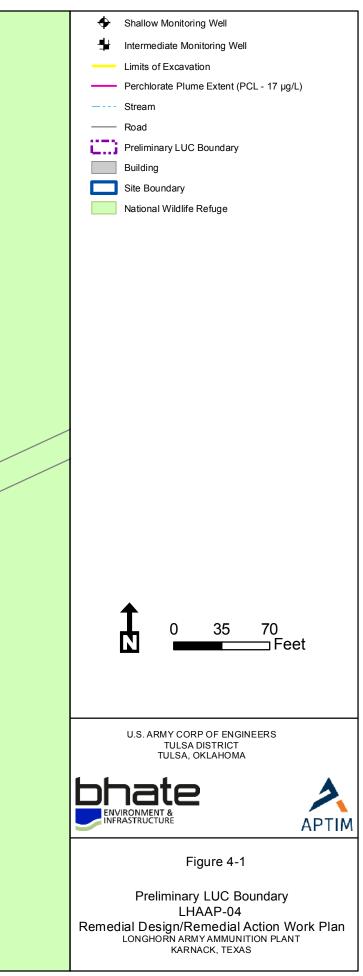


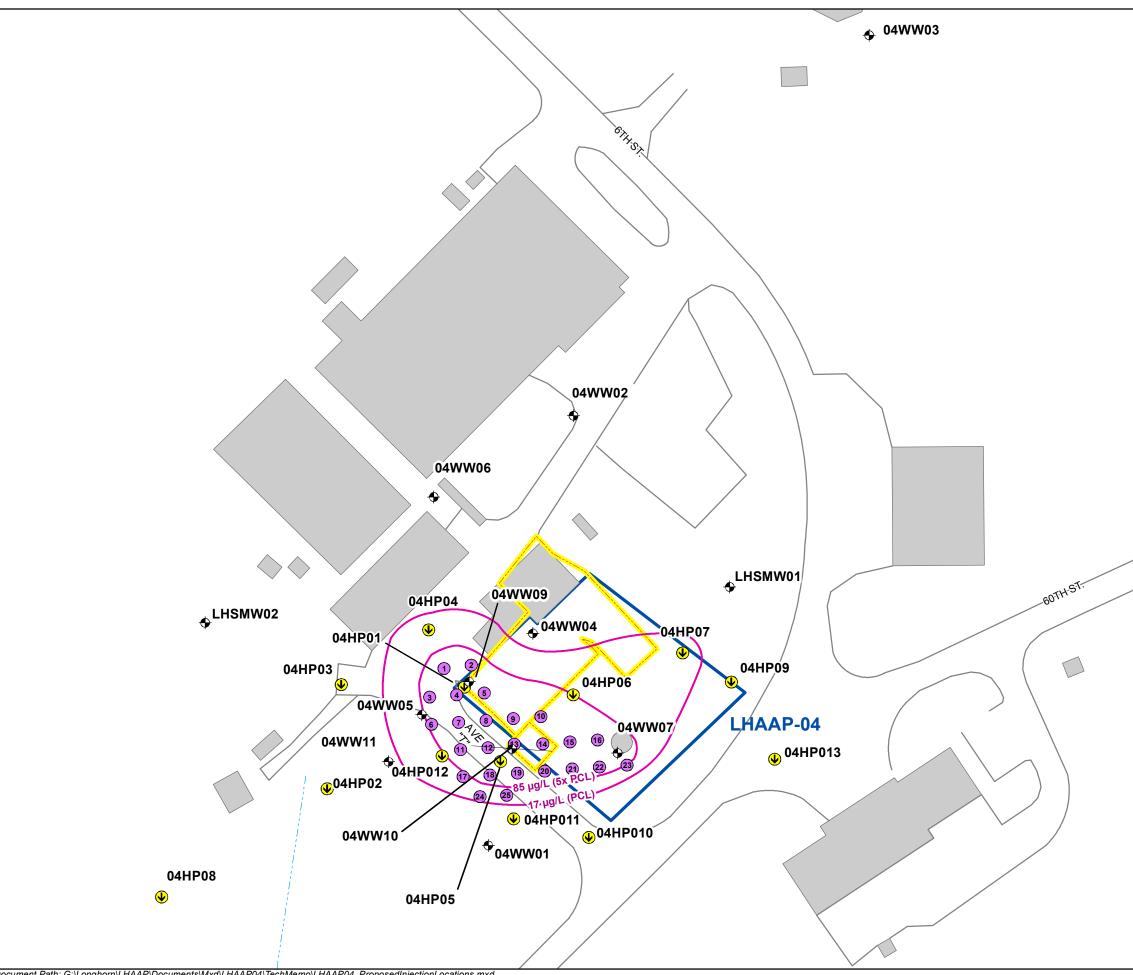


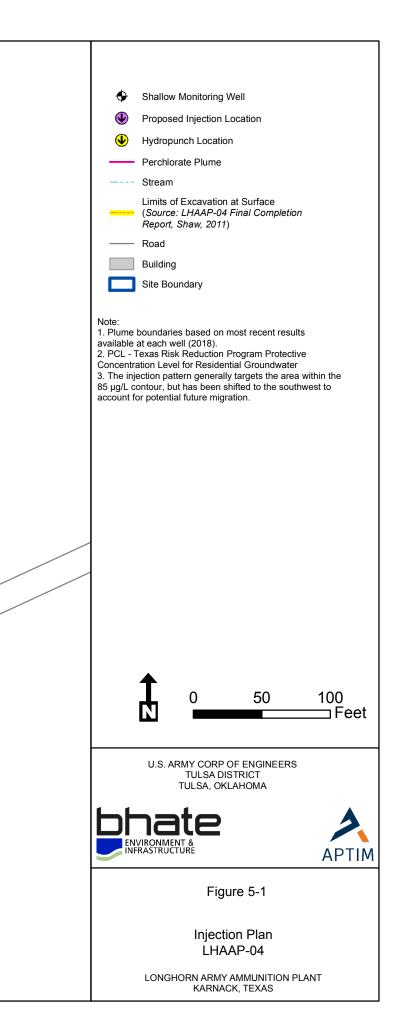


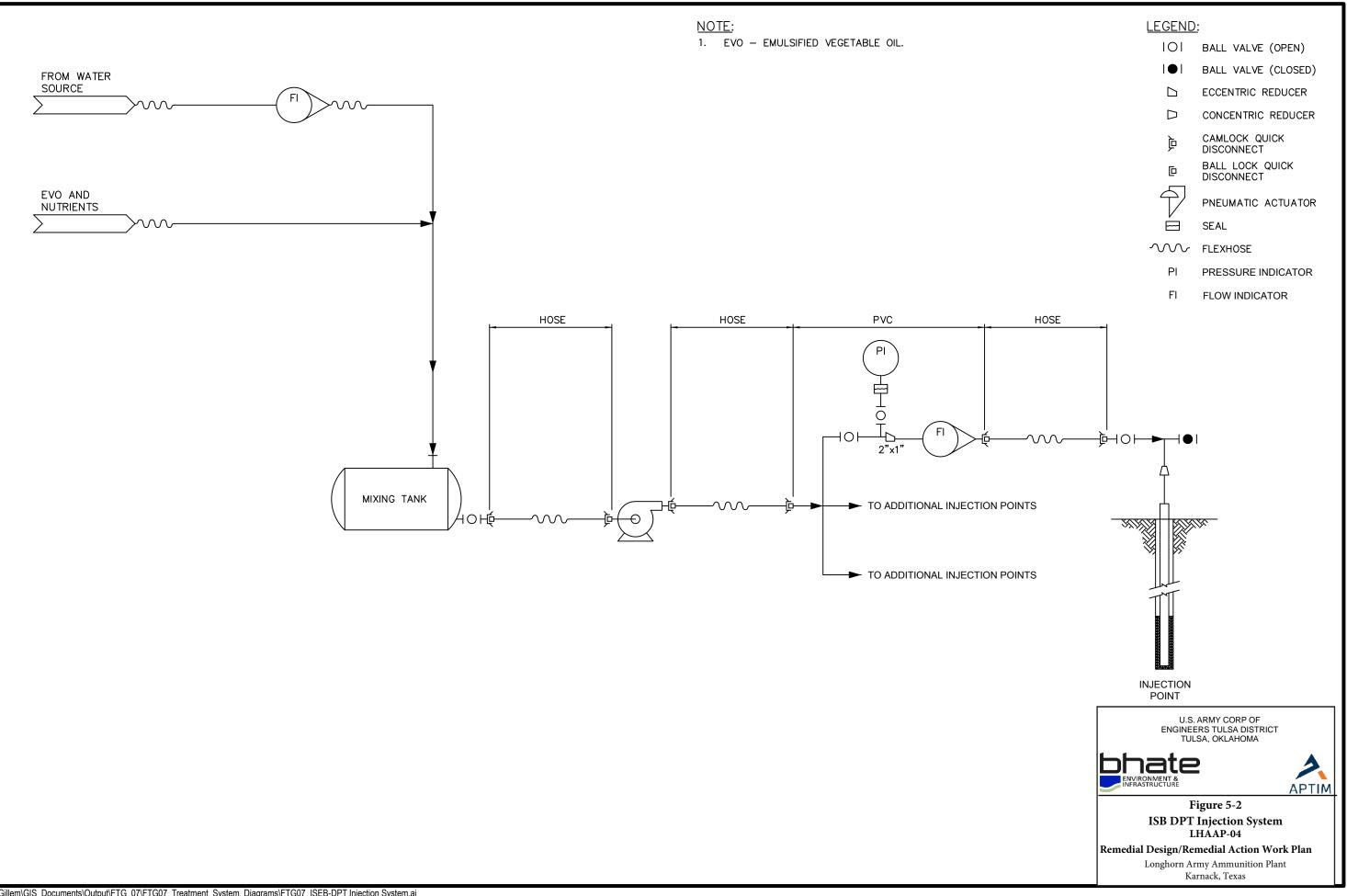


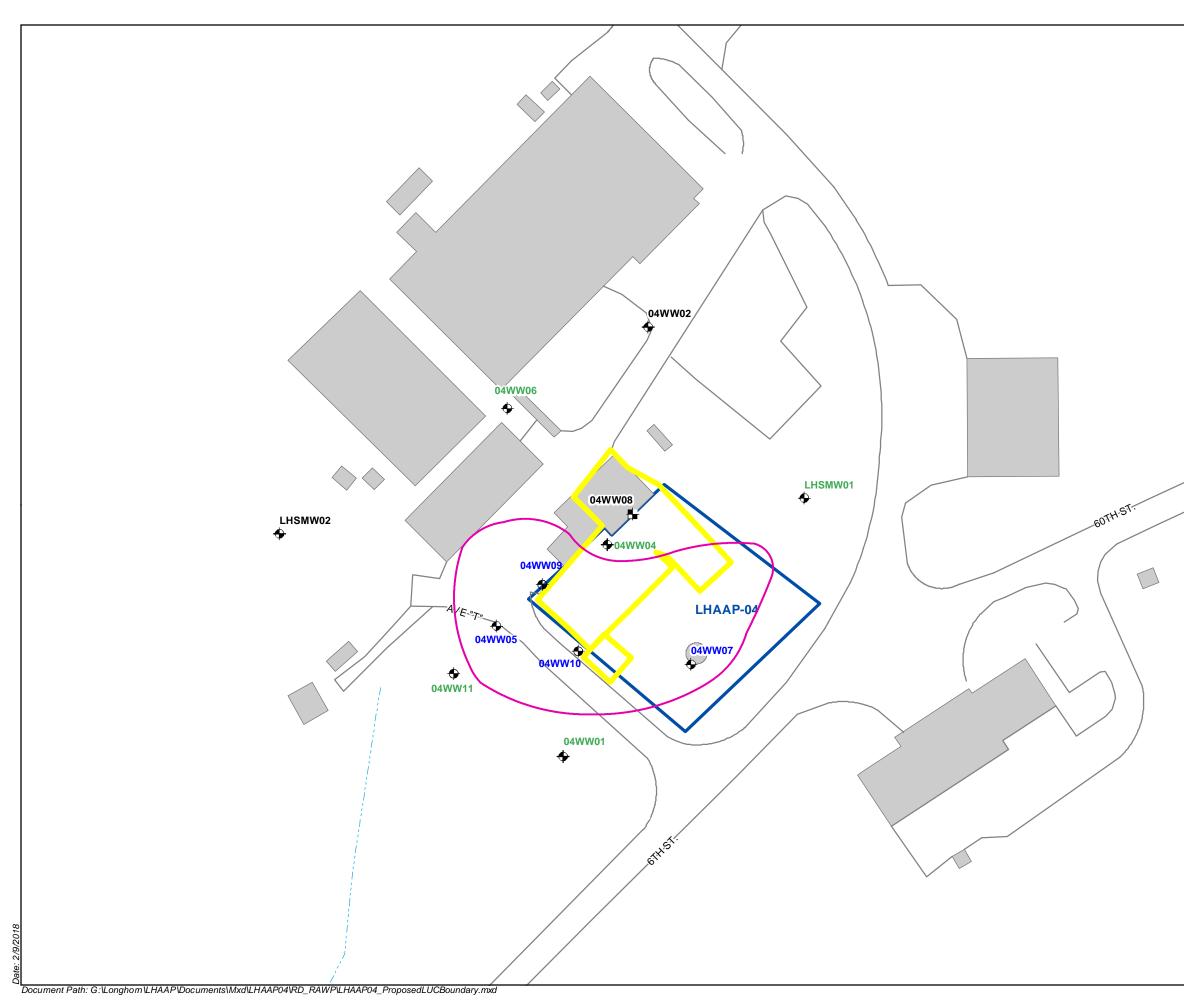


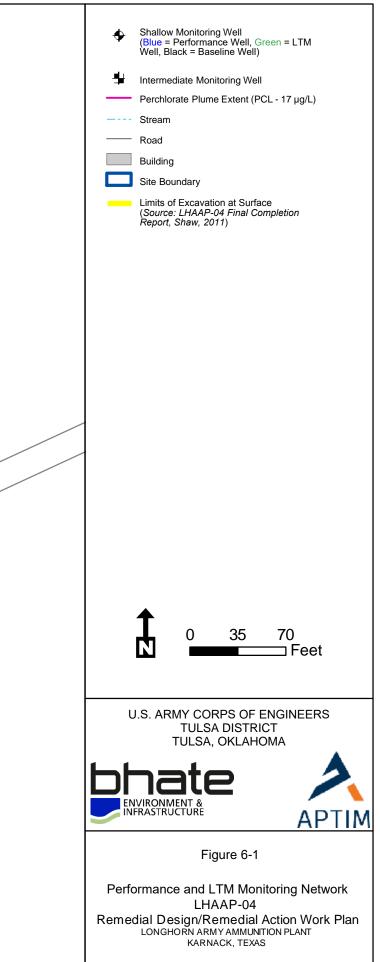











Document Path: G:\Longhorn\LHAAP\Documents\Mxd\LHAAP04\TechMemo\LHAAP04_ProposedInjectionLocations.mxd

Appendix A

Boring Logs and Monitoring Well Construction Forms for Newly Installed Monitoring Wells

Drilling Log

Soil Boring

04HP01 Page: 1 of 1

Location LHAAP-04 Surface Elev. NA Top of Casing NA Screen: Dia NA Casing: Dia NA Fill Material Granular Bento Drill Co. Best Drilling Driller Ramon Gutierrez	Total Hole Depth Water Level Initia Length <u>NA</u> Length <u>NA</u> <i>onite</i> Log By <u>Wesley</u>	<i>r Garcia</i> Date <u>11/27/18</u> Driller <u># NA</u>							
Checked By Bill Foss	Graphic Log USCS Class.	License No Description (Color, Texture, Structure) Geologic Descriptions are Based on the USCS.							
- 0 -		SANDY CLAY; red (2.5YR 4/6), firm, moist, some silt, trace roots.							
- 2 -	CL	SILTY CLAY; reddish gray (5YR 5/2), stiff, damp, trace sand, trace brown							
6 ⊻ - 6	CL	SILTY SAND; red (10R 4/6), loose to firm, saturated, trace clay.							
- 8 - - 10 -	CL	SILTY CLAY; light brown and gray (7.5YR 6/3), stiff, damp, trace sand, trace calcareous nodules.							
- 12 -	CL	SANDY SILT; red (10R 5/6), loose, wet, trace clay. SILTY CLAY; light brown (7.5YR 6/4), stiff, dry to damp, trace sand.							
- 14	CL	CLAYEY SILT; yellowish brown (10YR 5/4), soft, wet, some sand. SILTY CLAY; SAA, soft to firm, moist, trace sand.							
Kev: 104/18 [HAAP-04 (02082019).69]	CL	SANDY CLAY; mottled dark grayish brown (10YR 2/2 and 4/2), hard, dry, some silt. END OF BORING AT 18 FEET.							
1971 – 20 – - 20 – 									

APT	IM

Drilling Log

Soil Boring

04HP02 Page: 1 of 1

Project _	Longhorn	Army Amm	nunition Plan	t	Owner	USACE		COMMENTS
Location	LHAAP-C	04					Proj. No. <u>501032</u>	Hydropunch to 12'.
Surface E	lev. <u>NA</u>		Total Hole I	Depth	14.0 ft.	_ North	East	
Top of Ca	sing <u>NA</u>		Water Leve	I Initia	∣_ <u> </u>	Static NA	Diameter2 in.	
			-			••		
Fill Materia							be	
Drill Co.					Direct Push (0			
							Driller_#NA	
Checked E			• •		icense No			
			I					
		Sample ID % Recovery	. <u>0</u>	USCS Class.			Description	
Depth (ft.)	(mqq)	nple	Graphic Log	S S		((Color, Texture, Structur	
		Sar % R	0			-	Descriptions are Based on	
- 0 -					SILTY CLA	Y; brown (10YR	4/3), soft, wet, some	sand, some roots.
- 2 -				CL				
- 4 -							$\frac{1}{10}$	firm, moist, trace silt.
				CL	SANDICL		1011X 0/4),	
					SILTY CLA	Y; dark yellowish	n brown (10YR 4/6), s	stiff, moist, trace roots,
- 6 -					trace ferrou	us iron (Ée) nodu	les.	
Ŭ				CL				
- 8 ⊻								
					CLAYEY SA	AND ; pale brown	(10YR 7/3), loose, s	saturated, trace silt.
				sc				
- 10 -								
				1	SANDY CL	AY; yellowish bro	own (10YR 5/8), firm	to stiff, moist, trace silt,
					trace Fe sta	anning.		
- 12 -				CL			0YR 4/2); stiff, wet, t	race silt, laminar
					appearance	e.		
_ب ۹ – 14 –					END OF BO	ORING AT 14 FE	ET.	
2/8/								
GPJ								
⁶⁶⁰ 16 –								
1								
Rev: 10/4/18 LHAAP-04 (02082019).GPJ 2/8/19								
18								
키 -								
/4/18								
ੈ – 20 –								
7-11								

Drilling Log

Soil Boring

04HP03 Page: 1 of 1

Project _	Longhorn Army A	mmunition Plan	t	Owner _USACE	COMMENTS
Location	LHAAP-04			Proj. No501032	Hydropunch to 17.5'.
		_ Total Hole [Depth	East	
				<u>7.5 ft.</u> Static <u>NA</u> Diameter <u>2 in.</u>	
	-			Type/Size <u>NA</u>	
				Type	
Eill Matori	Granular Ben	tonite		Rig/CoreKubota Geoprobe	
				Direct Push (0-18')	
				Garcia Date _11/28/18 Driller #NA	
				icense No. <u>TX290</u>	
Checkeu	By	11	L		
			ISS.	Description	
Depth (ft.)	PID (ppm) Sample ID	Graphic Log	USCS Class.		
ă,	Sam (p F		SC	(Color, Texture, Structure)	1000
		`		Geologic Descriptions are Based on the U	JSCS.
- 0 -	-	· . + 1, · 1, ·		Topooil	
		1/1/1/1/		Topsoil	
				SANDY CLAY;brown (7.5YR 5/3), firm, moist, small	gravel and roots
- 2 -				present.	
			CL		
	1				
- 4 -					
1				CLAYEY SAND; gray (7.5YR 6/1), loose to medium trace Fe staining, trace roots.	dense, moist to wet,
	-			trace re stanning, trace roots.	
- 6 -	1		SC		
	-				
↓ ¥					
- 8 -				SILTY CLAY; light gray (7.5YR 7/1), firm to stiff, dar	mp, trace Fe staining.
			CL		-
- 10 -			\parallel	SANDY CLAY; strong brown (7.5YR 5/6), firm, mois	t. trace silt
]		CL		
- 12 -	╢ ║				
			CL	SILTY CLAY; yellowish brown (10YR 5/4), soft, moi	SI, II due Sanu.
	1				
- 14 -				SANDY CLAY; very dark brown (10YR 2/2), mottled	with gray, firm,
41				moist. SAA ; color change to grayish brown (10YR 5/2).	
	╢ ║		CL	\mathbf{U} , color change to grayish brown (10 th $3/2$).	
GP.					
<u>6</u> – 16 –	1			SILTY CLAY; dark grayish brown (10YR 4/2), stiff, o	Jamp, Iaminar
- 1	╢ ║		CL	appearance, trace sand.	
04 (0					
Rev: 10/4/18 LHAAP-04 (02082019).GPJ 	1			END OF BORING AT 18 FEET.	
키 -					
/4/18					
ੈ - 20 -	╢ ║				
Rev					
- 11					
	u II		u – I		

4	
APTI	Μ

Soil Boring

04HP04 Page: 1 of 1

			10405		
Project Longhorn Army Ami	nunition Plant				COMMENTS Hydropunch to 17.1'. PVC
Location				Proj. No501032	_ screen set 5-15'.
				East	-
Top of Casing <u>NA</u>					-
Screen: Dia <u>1 in.</u>	Length 101	ft.	Type/Size _	Sch. 40 PVC/0.010 in.	_
Casing: Dia <u>1 in.</u>	Length _5 ft.		TypeSch	. 40 PVC	_
Fill Material _Granular Bento	nite		Rig/Core Kubota Ge	eoprobe	_
Drill Co. Best Drilling	Me	thod	Direct Push (0-20')		
				/18 Driller <u>#</u> NA	
Checked By Bill Foss	0,				-
Depth (ff.) (ff.) (ppm) (ppm) (ppm) % Recovery		USCS Class.		Description (Color, Texture, Structure)	-
× ×		S ∥	Geo	ologic Descriptions are Based on the	USCS.
- 0 -		CL		I0YR 5/3), firm, moist, trace	
		sc	gravel.	rayish brown (10YR 4/2), de	
				y (10YR 7/1), firm, moist, tr	
			moisture increasing with	h depth, saturated at 7 feet	
- 6 -		CL			
- 8 -				rown (10YR 5/2), firm, wet,	
			SILIT CLAT, grayish bi	10wii (10 f R 5/2), 11iii, wel,	trace sand.
		CL			
- 10 -			SAA; color change to g	ray (10YR 501), moisture c	hange to damp.
- 12 -			SANDY SILT; pale brow	vn (10YR 6/3), stiff, moist to	wet, some clay.
		ML			
- 14 -			CAA: color change to y	allowish brown $(10)/D E/G$	density change to firm
8/19			SAA, color change to ye	ellowish brown (10YR 5/6),	density change to firm.
			SANDY CLAY; light gra	y (10YR 7/2), stiff to hard, o	damp, trace gravel.
^d - 16 -		CL			
5019			SILTY CLAY; brownish	yellow (10YR 6/6), firm, mo	bist, trace sand.
		CL 📗			
^d d 18 -				y (10yr 4/1), hard, damp, la	minar appearance and
티		CL	crumbly texture.	•	
4/18					
Kev: 104/18 [HAAP-04 (02082019) GPJ 758/19 		—	END OF BORING AT 20) FEET.	
Rev					
	II II	11			

APT	IM

Soil Boring

04HP05 Page: 1 of 1

Project Longhorn Army	Ammunition Plant	Owner USACE COMMENTS				
Location <u>LHAAP-04</u>		Proj. No501032 Hydropunch to 15'. PVC screen set to 5-15'.				
	Total Hole Dept					
Top of Casing NA	Water Level Init	al <u>2 8.0 ft.</u> Static <u>NA</u> Diameter <u>2 in.</u>				
		Type/Size <u>Sch. 40 PVC/0.010 in.</u>				
		Type _Sch. 40 PVC				
-	-	Rig/Core _Kubota Geoprobe				
Drill Co. <u>Best Drilling</u>		•				
		/ <i>Garcia</i> Date <u>11/27/18</u> Driller <u>#NA</u>				
Checked By <u>Bill Foss</u>						
Depth (ft.) (ft.) (ppm)	% Recovery Graphic Log USCS Class.	Description (Color, Texture, Structure) Geologic Descriptions are Based on the USCS.				
- 0 -						
		Asphalt & Gravel				
		SILTY CLAY; yellowish brown (10YR 5/6), soft to firm, moist, trace sand.				
- 2 -						
- 4 -	CL	SAA ; gray (10YR 6/1), firm, damp, trace Fe staining.				
- 6 -						
		CLAYEY SAND; dark brown (10YR 3/3), firm, moist to wet, trace silt,				
- 8 🗹	sc	trace Fe staining.				
		SILTY CLAY ; gray (10YR 5/1) with yellowish brown (10YR 5/6) mottles, firm to stiff, moist, trace sandy lenses.				
- 10 -	CL					
- 12 -		SANDY CLAY; yellowish brown (10YR 5/4), firm to stiff, moist to damp,				
		silt increasing with depth, color changing to gray (10YR 5/1) with depth.				
_ − 14 −						
2/8/19						
je − 16 −	CL	SAA ; dark gray (10YR 4/1), hard, damp, laminar appearance, blocky				
0820		texture.				
Rev: 10/4/18 LHAAP-04 (02082019).GPJ						
^A - 18 -						
1/18						
⁴⁰ - 20 -						
Rev:		END OF BORING AT 20 FEET.				
	U II	11				

Drilling Log

Soil Boring

04HP06 Page: 1 of 1

Project _	onghorn	Army Amm	unition Plant		Owner _USACE	COMMENTS
Location .	LHAAP-	04			Proj. No. <u>501032</u>	Hydropunch to 14'. PVC screen set to 4-14'.
			Total Hole D	16.0 ft East	_	
Top of Ca	sing _NA	_				
					Type/Size <u>Sch. 40 PVC/0.010 in.</u>	_
					Type <i>Sch. 40 PVC</i>	
					Rig/Core Kubota Geoprobe	-
Drill Co.					Direct Push (0-16')	-
					Garcia DateDateDriller #NA	-
					cense No ZX290	-
	 					-
- t	<u>ہ</u>	Sample ID % Recovery	J hic	USCS Class.	Description	
Depth (ft.)	(mqq)	Reco	Graphic Log	CS ((Color, Texture, Structure)	
		Se %		SN	Geologic Descriptions are Based on the	USCS.
- 0 -					Sandy Clay FILL	
				CL		
- 2 -						
					SILTY CLAY; dark grayish brown (10YR 4/2), firm,	moist, trace sand,
- 4 -					trace roots.	
					SAA; yellowish brown (10YR 5/4), soft, moist, trace	e sand, trace plastic
6				CL	debris (possibly fill).	
- 6 -					SAA; light gray (10YR 7/1), firm, wet at 7 feet, trace	e Fe staining, trace
_ <u>▼</u>					sand.	
- 8 -					SANDY CLAY; light gray (10YR 7/1), firm, wet, trac	e silt.
				CL		
- 10 -						
					SILTY CLAY; light gray (10YR 7/1), soft, wet, some	sand.
- 12 -				CL	SAA; light gray (10YR 6/1), stiff, moist, trace sand	
					, , , , , , , , , , , , , , , , , , ,	
_ 14 -				$\left - \right $	SANDY CLAY; dark gray (10YR 4/1), stiff to hard, o	lamp laminar
2/8/19					appearance.	amp, iammai
_				CL		
ଡ଼ା ଚ୍ଚା- 16						
8201					END OF BORING AT 16 FEET.	
Rev: 10/4/18 LHAAP-04 (02082019).GPU						
LHA/						
9						
^{10/1} 20 -						
Sec.						
- - -						

APT	IM

Soil Boring

04HP07 Page: 1 of 1

,						
			unition Plan	t	OwnerOSACE	COMMENTS Hydropunch to 17'.
Location					Proj. No. <u>501032</u>	
Surface Elev. <u>NA</u> Total Hole Depth <u>20.0 ft.</u> North East						
Top of Ca	sing <u>NA</u>		Water Leve	l Initial	<u> </u>	
Screen: D	ia <u>NA</u>		Length _N	4	Type/Size _ <i>NA</i>	
Casing: D	ia NA		Length N	4	Type _ <u>NA</u>	
					Rig/Core Kubota Geoprobe	
					Direct Push (0-20')	
					Garcia DateDriller_#NA	
			0,		cense No Date Dimer	
				SS.	Description	
Depth (ft.)	DIG (mdd)	Sample ID % Recovery	Graphic Log	USCS Class	•	
	ਰ ਕੁ	Sam Re	Gra	scs	(Color, Texture, Structure)	
		***		Ď	Geologic Descriptions are Based on the I	JSCS.
- 0 -						
			$\frac{\sqrt{1}}{\sqrt{1}}$ $\frac{\sqrt{1}}{\sqrt{1}}$		Topsoil (Sandy Clay)	
			11. 11. 1		CANDY CLAY, dark vellowish brown (10)/D 1/1)	ft to firm moiot troop
					SANDY CLAY; dark yellowish brown (10YR 4/4), so silt.	on to mm, moist, trace
- 2 -						
				CL		
- 4 -						
					SILTY CLAY; yellowish brown (10YR 5/6), firm, dan	np, some Fe staining
- 6 -					and calcareous nodules.	
				CL		
- 8 -					SANDY CLAY; gray (10YR 6/1), stiff to hard, damp,	trace Fe staining,
					trace silt.	-
- 10 -				CL		
_ 12 ⊻						
					CLAYEY SAND; light yellowish brown (10YR 6/4), lo dense, wet, trace silt.	pose to medium
				sc	מטוושב, שבו, גומטב אוו.	
_ 14 –					SANDY CLAY; light gray (10YR 7/1), stiff, moist, tra	ice silt.
- 1/8/				CL		
L d B						
Rev: 10/4/18 LHAAP-04 (02082019) GPJ 2/8/19 					SILTY CLAY; pale brown (10YR 7/4), mottled with g	arav. stiff. moist. trace
0820				CL	Fe staining.	, <u>,, </u>
1 (05						
⁸ ⊣ 18 −					SANDY CLAY; grayish brown (10YR 5/2), grading to (10YR 2/1), stiff down lowing approximation of the second	o black at bottom
AH I				CL	(10YR 2/1), stiff, damp, laminar appearance.	
- 20 -						
20 -					END OF BORING AT 20 FEET.	
7-11						

APT	IM

Soil Boring

04HP08 Page: 1 of 1

Project	onghorn	Army Ammul	nition Plant		Owner USACE	COMMENTS	
Location _	LHAAP-0	04			Proj. No501032	Hydropunch to 16'. PVC screen set to 6-16'.	
Surface El	Surface Elev. <u>NA</u> Total Hole Depth <u>20.0 ft.</u> North East						
Top of Cas	Top of Casing <u>NA</u> Water Level Initial <u>4 10.0 ft.</u> Static <u>NA</u> Diameter <u>2 in.</u>						
					Type/Size <u>Sch. 40 PVC/0.010 in.</u>		
					Type <u>Sch. 40 PVC</u>		
					Rig/CoreKubota Geoprobe		
Drill Co					Ng/Cole		
Checked E	3y <u> </u>	033		L	icense No		
Depth (ft.)	(mqq)	Sample ID % Recovery	Graphic Log	USCS Class.	Description (Color, Texture, Structure)		
		Se % F		NSU	Geologic Descriptions are Based on the L	JSCS.	
- 0 - - 2 - - 4 - - 6 - - 8 -				CL	SANDY CLAY; yellowish brown (10YR 5/4), soft, mo silt. SAA; very pale brown (10YR 8/2), firm, damp, trace calcareous nodules.		
- 10 ⊻						a shows to all (199	
					CLAYEY SAND; very pale brown (10YR 8/2), loose,	saturated, trace silt.	
F -							
40							
- 12 -				SC			
<u> </u>							
Rev: 10/4/18 LHAAP-04 (02082019).GPJ 2/8/19 					SILTY CLAY; very pale brown (10YR 8/2), stiff, mois	st, trace sand.	
				CL			
≝ <u> </u>							
201					SANDY CLAY; grayish brown (10YR 5/2), soft, mois	st, trace silt.	
0208							
40					SAA ; dark gray (10YR 4/1), hard, damp, laminar ap	pearance.	
4 − 18 −				CL			
티]							
4/18							
₽ 20 -							
Rev:					END OF BORING AT 20 FEET.		
F 4							
7-11							

Soil Boring

04HP09 Page: 1 of 1

Project Longhorn Army Ami	munition Plant		OwnerUSACE				
Location _LHAAP-04			Proj. No501032	Hydropunch to 16.5'.			
Surface Elev. <u>NA</u>	Total Hole De	epth	19.0 ft North East	_			
Top of Casing <u>NA</u>	_						
Screen: Dia <u>NA</u>	Length <u>NA</u>		Type/Size _ <i>NA</i>	_			
Casing: Dia <u>NA</u>	Length <u>NA</u>		Туре _ <i>NA</i>	_			
			Rig/Core Kubota Geoprobe	_			
Drill Co. Best Drilling	Me	thod	Direct Push (0-19')	_			
Driller Ramon Gutierrez	Log By	sley G	arcia Date <u>12/13/18</u> Driller <u># NA</u>	_			
Checked By Bill Foss		_ Lic	ense No	-			
Depth (ft.) (ft.) PID (ppm) (ppm) % Recovery	Graphic Log	USCS Class.	Description (Color, Texture, Structure)				
S Sa Sa		NSU	Geologic Descriptions are Based on the				
_ 0 _							
	$\frac{\sqrt{L_2}}{\sqrt{L_2}} \cdot \frac{\sqrt{L_2}}{\sqrt{L_2}}$		Topsoil (Sandy Clay)				
- 2 -			SANDY CLAY; yellowish brown (10YR 5/4), firm, n	noist. trace Fe			
			staining.	,			
- 4 -							
		CL	SAA ; light gray (10YR 7/1), firm, damp, trace Fe staining, trace slit, trace				
- 6 -			calcareous nodules.				
- 8 <u>-</u>							
			CLAYEY SAND; dark gray (10YR 4/1), loose to me	edium dense, wet,			
			density increasing with depth.				
- 10 -		sc					
		30					
- 12 -			SANDY CLAY; brownish yellow (10YR 6/8), firm, n	noist, trace silt.			
		CL					
- 14 -							
			SILTY CLAY; yellowish brown (10YR 5/8), soft, we	t, sandy lenses,			
		CL	density increasing with depth.				
¹ 0 - 16 -							
			SANDY CLAY; dark grayish brown (10YR 4/2), firm	n, moist.			
0208							
8 10-4 		CL					
Kev: 10/1/18 [HAAP-04 (02082019) GPJ 20119 			SAA ; very dark gray (10YR 3/1), stiff, damp, lamin	ar appearance.			
		-+	END OF BORING AT 19 FEET.				
004/1							
7-11							

Soil Boring

04HP10 Page: 1 of 1

/ \\ \								Tage. TOT T
Project _	onghorn Army Am	munition Plan	t	Owner _L	JSACE			COMMENTS
Location .	LHAAP-04					Proj. No. <u>5010</u>	032	Hydropunch to 15'.
		Total Hole	Depth	19.0 ft.	North	East		
Top of Ca	sing NA	Water Leve	' I Initial	<u> </u>	Static NA	Diameter	2 in.	
Eill Motori	Granular Bento	nite		Rig/Core	Kubota Geoprol	be		
	Best Drilling		اممام م	Direct Push (0-19				
				Garcia Da		Driller_#	NΔ	
		• •		cense No. <u>TX290</u>		Driller <u>#</u>		
	3y		LI	cense No	,			
			ss.			Descript	ion	
Depth (ft.)	PID (ppm) Sample ID % Recovery	Graphic Log	USCS Class.			Descripti		
De	Re l b	Gra	SCS		,	Color, Texture, S	,	
	0%) S		Geologic	Descriptions are B	lased on the US	CS.
- 0 -		$\frac{\sqrt{1}}{2}$ $\frac{\sqrt{1}}{2}$		Topsoil (Sand	dy Clay)			
		1/ · 7/ · 7						
		<u>\\</u> , <u>\\</u>						
- 2 -		<u>1/2</u> <u>1/2</u> <u>1/</u>						
		<u> 11</u> . <u>11</u>						
	CLAYEY SAND; brownish yellow (10YR 6/6), loose, moist, tr							noist, trace silt,
- 4 -			sc	trace roots.				
				SANDY CLAY	; light gray (10)YR 7/1), firm,	, damp, trac	e calcareous
- 6 -				nodules.		·	-	
Ŭ			CL					
• V								
- 8 ≚			sc			ellow (10YR 6	6/6), loose, s	aturated, trace
				calcareous no		~~~~~		- <u>-</u>
				SANDY CLAY	; light gray (10	DYR 7/1), firm,	, moist, trac	e Fe staining.
- 10 -								
			CL					
- 12 -								dense, saturated,
			SC	trace silt.	, yellowish b		vo), mealun	i dense, saluraleu,
					; gray (10YR 5	5/1), firm, dam	np, trace silt	
- 14 -								
3/19 7								
1 5%								
GP								
⁽⁶¹⁰⁾ 16 –			CL					
2082								
6								
4 − 18 −				SAA: dark gra	ay (10YR 4/1),	stiff, damp. la	minar appe	arance.
Ę				-		-		
4/18				END OF BOR	ING AT 19 FE	ET.		
⁵⁰ - 20 -								
Rev: 10/4/18 LHAAP-04 (02082019) GPJ 2/8/19 0.07 1 1 1 1 1 0.07 1 91 1 1 1 91 1 1 1 91 1 1 1 1 1 1								
~								

Soil Boring

04HP11 Page: 1 of 1

2 31 1 11 1							
Project _Longhorn Army Ammunition	on Plant		COMMENTS				
Location		Proj. No. <u>501032</u>	Hydropunch to 15.5'.				
	ilev. <u>NA</u> Total Hole Depth <u>18.5 ft.</u> North East						
Top of Casing <u>NA</u> Wate	er Level Init	al <u>7.0 ft.</u> Static <u>NA</u> Diameter <u>2 in.</u>					
		Type/Size					
Casing: Dia <u>NA</u> Leng	gth <u>NA</u>	TypeNA					
Fill Material <i>Granular Bentonite</i>		Rig/Core Kubota Geoprobe					
Drill Co. Best Drilling							
Driller <u>Ramon Gutierrez</u> Log	By Wesle	<i>Garcia</i> Date <u>12/13/18</u> Driller <u># NA</u>					
Checked By _Bill Foss							
Depth (ft.) (ft.) (ft.) (ft.) (ft.) (ft.) (ft.)	Graphic Log USCS Class.	Description (Color, Texture, Structure) Geologic Descriptions are Based on the US	SCS.				
- 0 -							
	<u>x 1, x 1, x</u>	Topsoil (Sandy Clay)					
- 2 -		SANDY CLAY; yellowish brown (10YR 5/4), soft, mo roots.	ist, trace silt, trace				
		SAA ; color change to very pale brown (10YR 8/3).					
- 4 -	CL						
		SANDY CLAY ; light gray (7/1), with yellowish brown firm, damp, trace silt.	(101 K 5/8) mottles,				
- 6 -							
		CLAYEY SAND; pale brown (10YR 6/3), loose, satur	ated, decreased				
- 8 -		sand with depth, medium dense at 8 feet.					
- 10 -	SC						
- 12 -			14				
		SANDY CLAY ; gray (10YR 6/1), firm to stiff, moist, s depth.	lit increasing with				
	CL						
- 14 -							
		SILTY CLAY; yellowish brown (10YR 5/4), stiff, dam	p, trace sand.				
	CL						
6 16 -							
8201		SANDY CLAY ; very dark gray (10YR 3/1) with gray (laminations, hard, damp.	IUTR 5/1)				
	CL	······································					
^{b0} -4- 18 -							
		END OF BORING AT 18.5 FEET.					
⁴⁰ - 20 -							
Rev: 104/18 [HAAP-04 (02082019) GPJ 22019 - 16							
2-11							

Soil Boring

04HP12 Page: 1 of 1

Top of Casing <u>NA</u> Screen: Dia <u>NA</u> Casing: Dia <u>NA</u> Fill Material <u>Granular Bento</u> Drill Co. <u>Best Drilling</u>	Total Hole Depth Water Level Initial Length <u>NA</u> Length <u>NA</u> <i>nite</i> Method Log By <u>Wesley (</u>	Proj. No. 501032 19.0 ft. North East ✓ 9.0 ft. Static NA Type/Size NA Type NA Image: Static Rig/Core Kubota Geoprobe Direct Push (0-19') Sarcia Date 12/13/18 Driller # NA	-				
Cepth (ft.) (ft.) PID (ppm) (ppm) (ppm) (ppm)	Graphic Log USCS Class.	Description (Color, Texture, Structure) Geologic Descriptions are Based on the					
- 0 -	<u>846</u> <u>24</u> <u>24</u> <u>24</u> <u>24</u> <u>24</u> <u>24</u> <u>24</u> <u>24</u>	Topsoil (Sandy Clay)					
 - 4 - 6 	CL	 SANDY CLAY; yellow (10YR 7/6), firm, moist, trace small gravel. SAA; yellowish brown (10YR 5/6), firm, damp, trace silt. SAA; yellow (10YR 7/6), firm, damp, trace silt, trace Fe staining, trace calcareous nodules. 					
- 8 - - ⊻ - 10 - 		SILTY CLAY ; interbedded brownish yellow (10YR (10YR (10YR 7/1)) layers, firm, wet at 9 feet, trace sand.	6/8) and light gray				
- 12 - - 14 - 6487	SC	CLAYEY SAND; yellowish brown (10YR 5/6), loose					
Kev: 10/1/18 [HAAP-04 (0505019).GP - 16 - - 81 - - 81 - - 20 - - 20 -	CL CL	SILTY CLAY; brownish yellow (10YR 6/6), stiff, mc SANDY CLAY; grayish brown (10YR 5/2) to gray (laminar appearance.					
- 20		END OF BORING AT 19 FEET.					

Soil Boring

04HP13

	1 1 1 1					Page: 1 of 1				
Project	Longhorn	Army Amr	nunition Plan	t	OwnerUSACE	COMMENTS				
	LHAAP-0				Proj. No. <u>501032</u>	Hydropunch to 16'.				
			Total Hole	Depth	18.0 ft North East					
					<u> </u>					
	-				Otalio Diameter					
			-		Type Type					
					Rig/CoreKubota Geoprobe					
					Direct Push (0-18')					
			• •		Garcia Date <u>12/13/18</u> Driller <u># NA</u>					
Checked	By <u>Bill F</u>	033		L	icense No					
		_ <u>></u>		SS.	Description					
bt.	DID DId	Sample ID % Recovery	Graphic Log	USCS Class.	Description					
Depth (ft.)	a d	amp Rec	C dat	SCS	(Color, Texture, Structure)					
		s %		S	Geologic Descriptions are Based on the L	ISCS.				
- 0 -]		$\frac{\sqrt{1}}{2}$ $\frac{\sqrt{1}}{2}$		Topsoil (Sandy Clay)					
F	4		11 - 71 12 - 77							
			<u> \\ 1</u>	1						
- 2 -	-				SANDY CLAY; yellowish brown (10YR 5/8), firm, mo	bist, some mottling				
L				CL	with light brownish gray (10YR 6/2).	-				
				CL	SILTY CLAY; very dark gray (10YR 3/1), firm, damp	, trace sand.				
- 4 -	-				SANDY CLAY: yery hale brown (10VP 8/4) stiff da					
					SANDY CLAY; very pale brown (10YR 8/4), stiff, damp, trace calcareous nodules.					
-	-			CL						
6 -										
					SILTY CLAY; gray (5/1) with many calcareous nodu damp, some Fe staining.	les (10YR 8/1), stiff,				
F	-				damp, some re staming.					
- 8 -	7									
F	4			CL						
- 10 -	-									
L										
- 12 [_]	4			╢─┤	CLAYEY SAND; gray (10YR 6/1), loose, saturated,	color grading to very				
				1	pale brown (10YR 7/3) with depth, clay content incr	easing with depth.				
Γ	1			sc						
- 14 -	_ ∥									
(8/19										
15	\parallel				SANDY CLAY; white to light gray (10YR 8/1 and 7/2), stiff, damp, slight				
6 – 16 -					laminar appearance.					
01 J				CL						
1	-			1						
-04										
Rev: 10/4/18 LHAAP-04 (02082019) GPJ 2/8/19 	1				END OF BORING AT 18 FEET.					
키	4									
/4/18										
ê - 20 -	-									
Rev										
7-11										
	U									

APT	I M					-	Page: 1 of 1
Project L	onghorn A	rmy Amr	nunition Pla	nt	Owner	USACE	COMMENTS
	LHAAP-04					Proj. No501032	4" PVC 0.010" slot screen set from 15-25'. 4" PVC casing
Surface El	0-15'. 20/40 Sand at 12-25'.						
Top of Cas	Bentonite at 10-12'. Grout 0-10						
	-		Length _1			_ Static <u>NA</u> Diameter <u>10.25 in.</u> _ Type/Size <u>Sch. 40 PVC/0.010 in.</u>	NOTE: First 48" using post hol digger for utility cleance, then
						Type Sch. 40 PVC	probe to 60", boring drilled usir ~10.25" diameter hollow stem
						re _CME 75 Mobile Rig	augers, logged from split spoor
	Best Drillin					0-5'); hollow stem auger (5-25')	at 2.5' intervals.
Driller <u>S</u>	onny Tobol _{3y _} Bill Fo	la	Log By	D. Rowa		Date <u>12/12/17</u> Driller <u># 3026</u>	
fi a		Sample ID % Recovery	ic _	Class.		Description	
Depth (ft.)	(mqq)	mple Reco	Graphic Log	S S		(Color, Texture, Structure)	
_		Sa % F		USCS		Geologic Descriptions are Based on the U	SCS.
- 0 - 				CL		AY ; topsoil, some red silty clay. Y ; gray, firm to soft, moist, mottled orang	- Eo staining slight
- 4 -				CL	plasticity, p	platy layers.	
· -				CL	nodules, fe	AY ; tan, moist, soft, mottled orange Fe st w intermittent pebbles. Y ; dark gray to black, very moist, lessenii	
- 6 -				CL	concentrat SAA; color	ig of sand	
- 8 -					SAA ; color few calcite	change to gray, moist to very moist, inter nodules.	bedded sand lenses,
- 10 , 7				CL	_ mottled ora	AY; tan, interbedded gray clay lenses, ve ange Fe staining.sand.	
 - 12 					soft, plastic	Y; light gray, interbedded sand lenses, m c when wet. bove with the addition of interbedded ora	
- 14 - - 16 -							
- 18				CL	Same as a	bove with the addition of interbedded black	ck Fe staining.
- 20 - 22						\Y ; dark gray to black, interbedded tan sa	nd, firm, damp
- 24					Same as a	bove without sand.	
				1	END OF B	ORING AT 25 FEET.	
	i II		11	п П			

		rmy Amn	nunition Plar	nt	Page: 1 of 1 Owner USACE COMMENTS
Location _ Surface El	<u>LHAAP-04</u> ev. <u>NA</u>	!	Total Hole	Depth	Proj. No. 501032 4" PVC screen set from 10-20". 20.0 ft. North 6959038.63 ft. East 3306006.11 ft. Sand at 7-20". Bentonite from 5-7". Grout 0-5'.
Screen: Di Casing: Di Fill Materia	ia <u>4 in.</u> a <u>4 in.</u> al <u>20/40 S</u>	Sand; ben	Length <u>1</u> Length <u>1</u> Intonite chips	0 ft. 0 ft. , grout	Type/Size Sch. 40 PVC/0.010 in. digger for utility cleance, then probe to 60", boring drilled usir ~10.25" diameter hollow stem augers, logged from split spoor at 2.5' intervals. Rig/Core CME 75 Mobile Rig augers, logged from split spoor at 2.5' intervals.
Driller <u>So</u>		a	Log By _D	. Rowar	<u>Hand auger (0-5'); hollow stem auger (5-20')</u> Date <u>12/12/17</u> Driller <u># 3026</u> Drense No. <u>TX290</u>
Depth (ft.)	(mqq) OIq	Sample ID % Recovery	Graphic Log	USCS Class.	Description (Color, Texture, Structure) Geologic Descriptions are Based on the USCS.
- 0			<u> </u>		Topsoil
- 2 - - 4					SILTY CLAY ; tan to gray with interbedded sand lenses, orange Fe staining with black Fe Mn or organic nodules, moist with area of very moist. Same as above with increase in Fe staining, higher concentration of sand in bottom 1.5'.
- 6 -					SILTY CLAY ; firm, moist, plastic, mottled orange Fe staining, lessening silt concentration with depth, loss of sand.
- 8 - - 10				CL	Same as above with some interbedded sand lenses.
- 12 -					Same as above with lessening Fe staining. SILTY CLAY; light gray to black with mottled orange Fe staining nodules,
- - 14 -					Sill F CLAT, light gray to black with motiled orange Fe starting nodules, trace sand/silica throughout, firm to soft, moist to damp, little to no plasticity even when wet. Same as above with black Fe Mn or organic nodules at 17', darkening of
- 16 -					color at 16'.
- 18 - - 20 -				CL	CLAY; black, dry, few nodules of orange Fe staining. SILTY CLAY; black, dry, firm, very dense.
					END OF BORING AT 20 FEET.

		Ammunition Plai	nt	Owner	USACE	Page: 1 of 2
	LHAAP-04				Proj. No501032	Top 12' most likely backfill from
			Donth	45 0 ft	North F10. No North6959148.15 ft. East3305963.41 ft.	excavation as noted on 04WW04 boring log.
					Static <u>NA</u> Diameter <u>10.25 in.</u>	12" PVC surface casing set in
						shallow zone from 0-23' on 12/12/2017. 4" PVC screen se
					Type/Size <u>Sch. 40 PVC/0.010 in.</u>	from 31 to 41'. 20/40 Sand from
-					Type <u>Sch. 40 PVC</u>	29-45'. Bentonite from 27-29'. Grout from 0-27'.
				-	CME 75 Mobile Rig	Hole diameter 0-23' is 14; from
	Best Drilling			Hollow stem at		23-45' hole diameter is 10.25'.
				n cense No	Date <u>12/14/17</u> Driller <u># 3026</u> 90	
۔		% Recovery Graphic Log	USCS Class.		Description	
Depth (ft.)	DIG (ppm)	Recover Graphic Log	S S		(Color, Texture, Structure)	
	Sar (к 0			Geologic Descriptions are Based on the U	SCS.
- 0 —			CL	SANDY CL	AY ; topsoil, some silt, some red silty clay	
_					T; gray, clayey, increasing clay concentr	ation and decreasing
				sand with d	epin.	
2						
			ML			
- 4						
1					AY ; red, firm, moist, with depth there is in	creasing moisture
- 6 -			CL	content as v	well as decreasing sand concentration.	
-						
- 8					Y; red, soft, moist to very moist, trace ora	ange Fe staining with
-				some nodu	les of black Fe Mn or organics.	
-						
- 10 —						
4						
40				SILTY CLA	Y ; native gray, damp, trace sand, mottled	l orange Fe staining
- 12 —			CL	with interbe	dded black nodules of Fe Mn or organic	S.
_				SAA; color (interbedded	change to gray, very firm, sheeted, plast	ic when wet, trace
					a Sanu.	
- 14 —						
					pove with increasing trace of sand startin	g at 16', some orange
- 16				Fe staining.		
-						
- 18 -				CLAY; light when wet.	gray to dark gray with silt and trace sand	d, firm, moist, plastic
-				when wel.		
-			CL			
- 20 -						
20 -						
4						
					Continued Next Page	

Monitoring Well

04WW08 Page: 2 of 2

Project Longhorn Army Ammunition Plant

wher USACE

ation .	LHAAP-0	4			Proj. No. <u>501032</u>
(ft.)	DIA (mdd)	Sample ID % Recovery	Graphic Log	USCS Class.	Description
	- 9	San % Re	<u>5</u>	nsc	(Color, Texture, Structure) Geologic Descriptions are Based on the USCS.
_					<i>Continued</i> Same as above with some orange Fe staining.
22 –					
_				CL	
24 –					
-					SILTY CLAY; medium to dark gray, very firm, dense, dry, interbedded
26 –					black organic nodules, increase in moisture to a moist consistency around 28.5' through rest of core, transition to light gray color at 29'.
-					
28 –				CL	
-					
30 —					CLAY ; dark gray, moist, some orange Fe staining, firm to soft, plastic
-				CL	when wet. SAA ; color change to black, with silt, dry, firm.
32 <u>_</u> ⊽					
<u> </u>					NO RECOVERY
34 —					
-					SILTY CLAY; dark gray to black, from top to bottom saturated to moist,
36 —					firm to stiff, slight plasticity.
-				CL	
38 —					
-					CLAYEY SILT; light gray, clayey, damp, sheeted, firm to soft, no
40 —					plasticity.
-					
42 –				ML	
-					
44 –					
-					END OF BORING AT 45 FEET.
46 —					
-					
48 —					
_					

APT	IM					wonitoring we	II U4VVVU9 Page: 1 of 1
		rmy Ami	munition Plant		Ow	ner USACE	COMMENTS
Location						Proj. No	4" PVC well set at 20' with 10' c 0.010" slot screen. Filter pack
Surface Elev. <u>NA</u> Total Hole Depth <u>20.0 ft.</u>						North East	20/40 Sand at 8-20'. Bentonite chips 6-8' in 12" lifts, hydrated
						Static <u>NA</u> Diameter <u>10.25 in.</u>	between lifts. Grout 0-5' placed 1/16/2019.
						Type/Size <u>Sch. 40 PVC/0.010 in.</u>	1/10/2019.
Casing: Di	a <u>4 in.</u>		Length _10	ft.		Type Sch. 40 PVC	
Fill Materia						CoreCME 55	
Drill Co						er (0-5'); hollow stem auger (5-20')	
						Date Driller <u>#59385M</u>	
Checked E	By Bill Fo	SS		_ Licens	e No.	1X290	
	Б.				SS.	Description	
Depth (ft.)	Well Completion	DIG (mdd)	Sample ID % Recovery	Graphic Log	S Class.		
ăŬ	Com <	<u>н</u> а	% Re	B B	USCS	(Color, Texture, Structu Geologic Descriptions are Based or	
			01			Geologic Descriptions are based of	
-							
- 0 -	X X					Hand augered for utility clearance. See 0	4HP01 log for lithology.
	\bowtie						
- 2 -							
4	S S						
- 4 -							
						SILTY CLAY; reddish gray (5YR 5/2), stiff	damp. trace sand
- 6 -	S S				CL	and roots (FILL).	
						SILTY SAND; red (10R 4/6), loose to firm,	saturated, trace clay.
- <u>V</u>					SM		
- 8 -						CIL TV CLAV, light brown (7 EVD 6/2) and	grov (7 EVD 6/1)
-		•				SILTY CLAY; light brown (7.5YR 6/3) and stiff, damp, trace sand, trace calcareous r	
- 10 -		•			CL		
- 7							
- 12 -						SANDY SILT interbedded with SILTY CLA light brown (7.5YR 6/4), silt lenses loose a	
					SM	moist, trace sand.	, ,
- 14 -					$\left - \right $	SILTY CLAY; yellowish brown (10YR 5/4),	soft to firm, wet to
						moist, trace sand.	,
		•			CL		
- 16 -							
						SANDY CLAY; light brownish gray (10YR	6/2) to very dark
						brown (10YR 2/2), hard dry, some silt.	
- 18 -					CL		
	L H L H						
		11		11///////	u II		
 - 20		-				END OF BORING AT 20 FEET.	

Monitoring Well

04WW10

Project Longhorn Army Ammunition Plant Owner USACE COMMENTS Location LHAAP-04 Proj. No. 501032 4" PVC well set at 19' with 0.010" slot screen. Filter p 20/40 Sand at 7-19'. Bent chips 5-7' in 12" lifts. hvdra	APT	IM					Monitoring vve	II U4VVV IU Page: 1 of 1
Location	Project	onghorn A	rmy Ami	munition Plant		_ Ow	ner _USACE	COMMENTS
Surface Elev. <u>MA</u> Total Hole Depth <u>19.0.1</u> Top of Casing <u>MA</u> Water Level Initial <u>¥.8.0.1</u> Static <u>MA</u> Diameter <u>10.2.5 in</u> Dismeter <u>10.2.5 in</u> Static <u>MA</u> Diameter <u>10.2.5 in</u> Dismeter <u>1</u>								4" PVC well set at 19' with 10' c 0.010" slot screen. Filter pack
Willer Rich Herman Log By Wesley Garcia Date 1/15/19 Driller # 59365M Decoded By Bill Focs License No. 7X290 Description	Surface Elev.NATotal Hole Depth $\underline{19.0 \text{ ft.}}$ Top of CasingNAWater Level Initial $\underline{\checkmark} 8.0$ Screen: Dia4 in.Length $\underline{10 \text{ ft.}}$ Casing: Dia4 in.Length 9 ft.				Initial $\underline{\nabla}$	8.0 ft.	North East Static NA Diameter 10.25 in. Type/Size Sch. 40 PVC/0.010 in. Type Type Sch. 40 PVC Sch. 40 PVC	chips 5-7' in 12" lifts, hydrated between lifts. Grout 0-5' placed
License No. TX200 general genera								
- 0 -								
- 2 - - 4 - - 6 - - 6 - - 8 ✓ - 10 - - 10 - - 10 - - 10 - - 10 - - 12 - - 12 - - 14 - - 16 - - 18 -	Depth (ft.)	Well Completion	(mqq)	Sample ID % Recovery	Graphic Log	USCS Class.	(Color, Texture, Structu	
 cL cL cL cLAYEY SAND; dark brown (10YR 3/3), medium dense, moist to wet at 8 feet, trace silt, trace Fe staining. sc SILTY CLAY; gray (10YR 5/1) with yellowish brown (10YR 5/6) mottles, firm to stiff, moist, trace sandy lenses. cL cL SANDY CLAY; yellowish brown (10YR 5/4), firm to stiff, moist to damp, silt increasing with depth, color change fades to gray (10YR 5/1) with depth. cL cL SAA; dark gray (10YR 4/1), hard, damp, laminar appearance, blocky texture. 	_						Hand augered for utility clearance. See 0	4HP05 log for lithology.
Star Star Siltry CLAY; gray (10YR 5/1) with yellowish brown (10YR 5/6) mottles, firm to stiff, moist, trace sandy lenses. 10 - 11 - 12 - 12 - 14 - 16 - 18 -	4					CL	CLAYEY SAND; dark brown (10YR 3/3), n	nedium dense, moist
 10 - 12 - 12 - 14 - 16 - 18 - 18 - 10 - 11 - 11 - 12 - 12 - 13 - 14 - 15 - 16 -<td>- 8 ¥</td><td></td><td></td><td></td><td></td><td>SC</td><td></td><td>-</td>	- 8 ¥					SC		-
 - 14 - - 16 - - 18 - - 18 - 	_					CL		
SAA; dark gray (10YR 4/1), hard, damp, laminar appearance, blocky texture.	_						damp, silt increasing with depth, color cha	
	- - 16 — -					CL		aminar appearance,
END OF BORING AT 19 FEET.	- 18 -							
- 20 -	- 20 -						END OF BORING AT 19 FEET.	

Monitoring Well

04WW11 Page: 1 of 1

Location _ Surface Ele Top of Cass Screen: Di Casing: Di: Fill Materia Drill Co Driller _ <u>Ri</u> Checked E	onghorn An LHAAP-04 ev. <u>NA</u> a <u>4 in.</u> a <u>4 in.</u> a <u>4 in.</u> a <u>4 in.</u> a <u>4 in.</u> a <u>4 in.</u> b <u>20/40 Sa</u> ETTL ch Herman by <u>Bill Fos</u>	Page: 1 of 1 COMMENTS Auger refusal at 11'. Used mud bit inside auger to break through cemented layer. 4" PV well set at 15.5' with 10' of 0.010" slot screen. Filter pack of 20/40 Sand at 4.5-15.5'. Bentonite chips 2.5-4.5' in in 12" lifts, hydrated between lifts. Grout 0-2.5' placed2 hours after bentonite hydration.					
Depth (ft.)	Well Completion	(mqq)	Sample ID % Recovery	Graphic Log	USCS Class.	(Color, Texture, Struct Geologic Descriptions are Based o	
- 0 - 2 - 2 - 4						Hand augered for utility clearance. Lithol	ogy not recorded.
- 6 - - ⊻ - 8 -					CL	SILTY CLAY; dark yellowish brown (10YR roots, trace Fe staining. CLAYEY SAND; pale brown (10YR 5/6), lo	
					SC	silt. SANDY CLAY; yellowish brown (10YR 5/6	
 - 12						trace Fe staining. Cemented SILTSTONE; very dark gray (1 SANDY CLAY; very dark gray (10YR 3/1),	
 - 14					CL	laminations.	, nana, ary, nginer gray
						END OF BORING AT 15.5 FEET.	
- 18							
- 20 -							

Project Name: Longhorn AAP	Location ID: 04WW01				
Project No: 501032	Sampler(s): Scott I	Beesinger			
FIELD CONDITIONS Cloudy					
SAMPLING INFORMATION					
Sample No: <u>04WW01-190122</u>	DATE/TIME: 1/22/2019 / 12:30	Pump Inlet Depth (ft): 22.00			
Sampling Method: Bladder Pump	Sample Purpose: REG	Sample Matrix: GW			

Sample Notes:

	COC Notes	Analysis Group	Analytic Method
ALSHT-012219	None	PERCHLORATE	6850

Sampler: Stats Blesser Bitter	Scott Beesinger	
QC'ed By: MAAM	William A. Foss	2/12/2019

WELL AND PURGING INFORMATION

Measuring Point : Top of Casing	Purging Method/Equipment: Low Flow					
Casing ID (in.): <u>4</u>	Purge Start Date/Time: <u>1/22/2019 / 12:00</u>					
Depth to Water - Initial (DTWi) (ft) 7.33	Purge End Date/Time: <u>1/22/2019 / 12:30</u>					
Measured Depth of Well (ft): 27.28	PID Reading: <u>N/A</u>					
Screen Interval (ft): <u>17.00 - 27.00</u>						
Pump Start Time: <u>1/22/2019 / 12:00</u>						

		Loc	ation ID: 0	4WW01	Sample N	o: 04WW01	-190122			
Date of Reading	Time of Reading	Purge Rate	Total Purge	DTW	Cond.	Temp.	рН	Turbidity	ORP	DO
		(ml/min)	(L)	(ft)	(mS/cm)	(°C)		(NTU)	(mV)	(mg/L)
	Purge Stabilization Criteria	-	-	Drawdown limit 0.3 ft	<u>+</u> 10%		<u>+</u> 0.1 units	No criteria		<u>+</u> 10% or 0.2 mg/L
1/22/2019	12:05	100	0.50	7.41	3.13	16.26	6.83	22.0	319	0.80
1/22/2019	12:10	100	1.0	7.46	3.10	16.36	6.41	14.6	324	0.39
1/22/2019	12:15	100	1.5	7.50	3.10	16.36	6.20	11.8	326	0.16
1/22/2019	12:20	100	2.0	7.53	3.10	16.37	6.19	11.5	326	0.15
1/22/2019	12:25	100	2.5	7.55	3.10	16.38	6.18	11.1	327	0.16
1/22/2019	12:30	100	3.0	7.56	3.10	16.39	6.17	10.9	327	0.15

on Log

1	Sample Collection Lo
APTIM	
Project Name: Longhorn AAP	Location ID: 04WW02

Project No: 501032

Sampler(s): Scott Beesinger

FIELD CONDITIONS <u>Clear</u>

SAMPLING INFORMATION

Sample No: <u>04WW02-190121</u>	DATE/TIME: 1/21/2019/ 09:55	Pump Inlet Depth (ft): 21.00
Sampling Method: Bladder Pump	Sample Purpose: REG	Sample Matrix: GW

Sample Notes:

	COC Notes	Analysis Group	Analytic Method
ALSHT-012119	None	PERCHLORATE	6850

Sampler:	Status Blo Sys BHATE	Scott Beesinger	
QC'ed By:	MAUN	William A. Foss	2/12/2019

WELL AND PURGING INFORMATION

Measuring Point : Top of Casing Casing ID (in.): 4" Depth to Water - Initial (DTWi) (ft) 6.47 Measured Depth of Well (ft): 26.73 Screen Interval (ft): <u>16.00 - 26.00</u>

Pump Start Time: 1/21/2019 / 09:25

Purging Method/Equipment: Low Flow Purge Start Date/Time: 1/21/2019 / 09:25 Purge End Date/Time: <u>1/21/2019 / 09:55</u>

PID Reading: N/A

		Sample N	o: 04WW02	2-190121						
Date of Reading	Time of Reading	Purge Rate	Total Purge	DTW	Cond.	Temp.	рН	Turbidity	ORP	DO
		(ml/min)	(L)	(ft)	(mS/cm)	(°C)		(NTU)	(mV)	(mg/L)
	Purge Stabilization Criteria	-	-	Drawdown limit 0.3 ft	<u>+</u> 10%		<u>+</u> 0.1 units	No criteria		<u>+</u> 10% or 0.2 mg/L
1/21/2019	09:30	100	0.50	6.52	0.446	16.22	6.94	55.60	250	0.85
1/21/2019	09:35	100	1.0	6.58	0.435	16.70	6.62	20.0	230	0.63
1/21/2019	09:40	100	1.50	6.62	0.433	16.91	6.43	8.30	224	0.58
1/21/2019	09:45	100	2.0	6.65	0.432	16.99	6.42	6.0	223	0.57
1/21/2019	09:50	100	2.5	6.67	0.432	17.06	6.41	5.7	222	0.57
1/21/2019	09:55	100	3.0	6.69	0.432	17.13	6.40	4.50	221	0.56

og

2	Sample Collection Lo
APTIM	
Project Name: Longhorn AAP	Location ID: 04WW03
Project No: 501032	Sampler(s): Scott Bee

Sampler(s): Scott Beesinger

FIELD CONDITIONS <u>Clear</u>

SAMPLING INFORMATION

Sample No: 04WW03-190121	DATE/TIME: 1/21/2019/ 09:00	Pump Inlet Depth (ft): 21.00
Sampling Method: Bladder Pump	Sample Purpose: REG	Sample Matrix: GW

Sample Notes:

	COC Notes	Analysis Group	Analytic Method
ALSHT-012119	None	PERCHLORATE	6850

Sampler:	States Blo Sys BHATE	Scott Beesinger	
QC'ed By:	MAUN	William A. Foss	2/12/2019

WELL AND PURGING INFORMATION

Measuring Point : Top of Casing Casing ID (in.): 4" Depth to Water - Initial (DTWi) (ft) 6.57 Measured Depth of Well (ft): 26.88

Purging Method/Equipment: Low Flow Purge Start Date/Time: 1/21/2019 / 08:30 Purge End Date/Time: <u>1/21/2019 / 09:00</u> PID Reading: N/A

Screen Interval (ft): <u>16.00 - 26.00</u>

Pump Start Time: 1/21/2019 / 08:30

		Loc	cation ID: 0	4WW03	Sample N	o: 04WW03	-190121			
Date of Reading	Time of Reading	Purge Rate	Total Purge	DTW	Cond.	Temp.	рН	Turbidity	ORP	DO
		(ml/min)	(L)	(ft)	(mS/cm)	(°C)		(NTU)	(mV)	(mg/L)
	Purge Stabilization Criteria	-	-	Drawdown limit 0.3 ft	<u>+</u> 10%		<u>+</u> 0.1 units	No criteria		<u>+</u> 10% or 0.2 mg/L
1/21/2019	08:35	100	0.50	6.63	1.17	12.15	7.33	29.5	299	3.68
1/21/2019	08:40	100	1.0	6.69	1.13	12.67	7.05	7.5	260	3.25
1/21/2019	08:45	100	1.5	6.73	1.13	12.95	7.04	3.9	256	3.19
1/21/2019	08:50	100	2.0	1.76	1.12	13.04	7.03	2.6	255	3.17
1/21/2019	08:55	100	2.5	6.78	1.12	13.12	7.03	2.0	254	3.15
1/21/2019	09:00	100	3.0	6.79	1.12	13.18	7.03	1.3	254	3.14

tion Log

>	Sample Collection Lo
APTIM	
Project Name: Longhorn AAP	Location ID: 04WW04

Project No: 501032

Sampler(s): Scott Beesinger

FIELD CONDITIONS <u>Clear</u>

SAMPLING INFORMATION

Sample No: <u>04WW04-190121</u>	DATE/TIME: 1/21/2019/ 12:30	Pump Inlet Depth (ft): 16.00
Sampling Method: Bladder Pump	Sample Purpose: REG	Sample Matrix: GW

Sample Notes:

	COC Notes	Analysis Group	Analytic Method
ALSHT-012119	None	PERCHLORATE	6850

Sampler:	Saus Bresses BHATE	Scott Beesinger	
QC'ed By:	MAUN	William A. Foss	2/12/2019

WELL AND PURGING INFORMATION

Measuring Point : <u>Top of Casing</u>	Purging Method/Equipment: Bladder Pump
Casing ID (in.): <u>2</u>	Purge Start Date/Time: <u>1/21/2019 / 12:00</u>
Depth to Water - Initial (DTWi) (ft) 5.68	Purge End Date/Time: <u>1/21/2019 / 12:30</u>
Measured Depth of Well (ft): 21.6	PID Reading: <u>N/A</u>
Screen Interval (ft): <u>11.00 - 21.00</u>	

Pump Start Time: 1/21/2019 / 12:00

Location ID: 04WW04 Sample No: 04WW04-190121										
Date of Reading	Time of Reading	Purge Rate	Total Purge	DTW	Cond.	Temp.	рН	Turbidity	ORP	DO
		(ml/min)	(L)	(ft)	(mS/cm)	(°C)		(NTU)	(mV)	(mg/L)
	Purge Stabilization Criteria	-	-	Drawdown limit 0.3 ft	<u>+</u> 10%		<u>+</u> 0.1 units	No criteria		<u>+</u> 10% or 0.2 mg/L
1/21/2019	12:05	100	0.5	5.75	0.418	15.34	6.20	110	24	0.78
1/21/2019	12:10	100	1.0	5.81	0.419	16.30	6.33	93	2	0.39
1/21/2019	12:15	100	1.5	5.85	0.425	16.67	6.33	88.9	-6	0.15
1/21/2019	12:20	100	2.0	5.88	0.425	16.74	6.33	88.5	-7.0	0.15
1/21/2019	12:25	100	2.5	5.90	0.426	16.85	6.33	88.1	-8.0	0.16
1/21/2019	12:30	100	3.0	5.91	0.426	16.95	6.33	87.7	-8	0.15

2	Sample
APTIM	
Project Name: Longhorn AAP	
Project No: 501032	

Location ID: 04WW05

Sampler(s): Scott Beesinger

FIELD CONDITIONS

SAMPLING INFORMATION

Sample No: <u>04WW05-190121</u>	DATE/TIME: 1/21/2019/ 13:20	Pump Inlet Depth (ft): 24.00
Sampling Method: Bladder Pump	Sample Purpose: REG	Sample Matrix: GW

Sample Notes:

	COC Notes	Analysis Group	Analytic Method
ALSHT-012119	None	PERCHLORATE	6850

Sampler:	States Blosger BHATE	Scott Beesinger	
QC'ed By:	MAUN	William A. Foss	2/12/2019

WELL AND PURGING INFORMATION

 Measuring Point : Top of Casing
 Purging Method/Equipment: Bladder Pump

 Casing ID (in.): 2
 Purge Start Date/Time: 1/21/2019 / 12:50

 Depth to Water - Initial (DTWi) (ft) 6.78
 Purge End Date/Time: 1/21/2019 / 13:20

 Measured Depth of Well (ft): 29.63
 PID Reading: _________

 Screen Interval (ft): 19.00 - 29.00
 Pump Start Time: 1/21/2019 / 12:50

Location ID: 04WW05 Sample No: 04WW05-190121										
Date of Reading	Time of Reading	Purge Rate	Total Purge	DTW	Cond.	Temp.	рН	Turbidity	ORP	DO
		(ml/min)	(L)	(ft)	(mS/cm)	(°C)		(NTU)	(mV)	(mg/L)
	Purge Stabilization Criteria	-	-	Drawdown limit 0.3 ft	<u>+</u> 10%		<u>+</u> 0.1 units	No criteria		<u>+</u> 10% or 0.2 mg/L
1/21/2019	12:55	100	0.50	6.85	0.577	16.93	6.43	39.3	73	2.12
1/21/2019	13:00	100	1.0	6.90	0.583	17.30	6.34	35.6	130	1.79
1/21/2019	13:05	100	1.5	6.94	0.583	17.57	6.27	33.5	160	1.65
1/21/2019	13:10	100	2.0	6.97	0.584	17.65	6.26	33.1	161	1.64
1/21/2019	13:15	100	2.5	6.99	0.584	17.70	6.26	32.8	162.0	1.63
1/21/2019	13:20	100	3.0	7.0	0.584	17.73	6.25	32.6	163	1.62

tion Log

2	Sample Collection Lo
APTIM	
Project Name: Longhorn AAP	Location ID: 04WW06

Project No: 501032

Sampler(s): Scott Beesinger

FIELD CONDITIONS <u>Clear</u>

SAMPLING INFORMATION

Sample No: 04WW06-190121	DATE/TIME: 1/21/2019/ 10:50	Pump Inlet Depth (ft): 23.00
Sampling Method: Bladder Pump	Sample Purpose: REG	Sample Matrix: GW

Sample Notes:

	COC Notes	Analysis Group	Analytic Method
ALSHT-012119	None	PERCHLORATE	6850

Sampler:	States Ble Sys BHATE	Scott Beesinger	
QC'ed By:	MAUN	William A. Foss	2/12/2019

WELL AND PURGING INFORMATION

Measuring Point : Top of Casing Purging Method/Equipment: Low Flow Purge Start Date/Time: 1/21/2019 / 10:20 Casing ID (in.): 4 Purge End Date/Time: <u>1/21/2019 / 10:50</u> Depth to Water - Initial (DTWi) (ft) 5.53 Measured Depth of Well (ft): 28.14 PID Reading: N/A Screen Interval (ft): <u>18.00 - 28.00</u> Pump Start Time: 1/21/2019 / 10:20

		Loc	cation ID: 0	4WW06	Sample N	o: 04WW06	-190121			
Date of Reading	Time of Reading	Purge Rate	Total Purge	DTW	Cond.	Temp.	рН	Turbidity	ORP	DO
		(ml/min)	(L)	(ft)	(mS/cm)	(°C)		(NTU)	(mV)	(mg/L)
	Purge Stabilization Criteria	-	-	Drawdown limit 0.3 ft	<u>+</u> 10%		<u>+</u> 0.1 units	No criteria		<u>+</u> 10% or 0.2 mg/L
1/21/2019	10:25	100	0.50	5.60	1.33	15.57	6.83	2.0	266	3.19
1/21/2019	10:30	100	1.0	5.65	1.36	15.98	6.80	1.9	263	3.0
1/21/2019	10:35	100	1.50	5.69	1.36	16.02	6.76	1.8	263	2.88
1/21/2019	10:40	100	2.0	5.72	1.37	16.10	6.75	2.0	264	2.85
1/21/2019	10:45	100	2.5	5.74	1.37	16.16	6.75	2.3	263	2.83
1/21/2019	10:50	100	3.0	5.75	1.37	16.20	6.75	2.1	264	2.82

. tion Log

2	Sample Collection Lo		
APTIM			
Project Name: Longhorn AAP	Location ID: 04WW07		

Project No: 501032

Sampler(s): Scott Beesinger

FIELD CONDITIONS <u>Cloudy</u>

SAMPLING INFORMATION

Sample No: <u>04WW07-190122</u>	DATE/TIME: 1/22/2019 / 11:40	Pump Inlet Depth (ft): 17.50
Sampling Method: Bladder Pump	Sample Purpose: REG	Sample Matrix: GW

Sample Notes:

	COC Notes	Analysis Group	Analytic Method
ALSHT-012219	None	PERCHLORATE	6850

Sampler:	States Blo Sys BHATE	Scott Beesinger	
QC'ed By:	MAUN	William A. Foss	2/12/2019

WELL AND PURGING INFORMATION

Measuring Point : <u>Top of Casing</u>	Purging Method/Equipment: Low Flow
Casing ID (in.): <u>4</u>	Purge Start Date/Time: <u>1/22/2019 / 11:10</u>
Depth to Water - Initial (DTWi) (ft) 6.63	Purge End Date/Time: <u>1/22/2019 / 11:40</u>
Measured Depth of Well (ft): 22.7	PID Reading: <u>N/A</u>
Screen Interval (ft): <u>12.50 - 22.50</u>	
Pump Start Time: <u>1/22/2019 / 11:10</u>	

Location ID: 04WW07 Sample No: 04WW07-190122										
Date of Reading	Time of Reading	Purge Rate	Total Purge	DTW	Cond.	Temp.	рН	Turbidity	ORP	DO
		(ml/min)	(L)	(ft)	(mS/cm)	(°C)		(NTU)	(mV)	(mg/L)
	Purge Stabilization Criteria	-	-	Drawdown limit 0.3 ft	<u>+</u> 10%		<u>+</u> 0.1 units	No criteria		<u>+</u> 10% or 0.2 mg/L
1/22/2019	11:15	100	0.5	6.70	5.55	16.29	6.43	0.0	344	2.12
1/22/2019	11:20	100	1.0	6.75	4.30	16.72	6.34	0.0	341	1.94
1/22/2019	11:25	100	1.50	6.79	4.19	16.79	6.25	0.0	338	1.88
1/22/2019	11:30	100	2.0	6.81	4.18	16.86	6.24	0.0	337	1.86
1/22/2019	11:35	100	2.5	6.83	4.18	16.94	6.23	0.0	336	1.84
1/22/2019	11:40	100	3.0	6.84	4.17	17.0	6.22	0.0	336	1.83

Sample Matrix: GW

APTIM	
Project Name: Longhorn AAP	Location ID: 04WW09
Project No: 501032	Sampler(s): Scott Beesinger
FIELD CONDITIONS Cloud	Y
SAMPLING INFORMATION	
Sample No: 04WW09-190122	DATE/TIME: 1/22/2019 / Pump Inlet Depth (ft): 18.00

Sample Purpose: REG

09:05

Sampling Method: Bladder Pump

Sample Notes: 04WW09-190122-FD Also Collected

	COC Notes	Analysis Group	Analytic Method
ALSHT-012219	None	PERCHLORATE	6850

Sampler:	Satur Bue Sager BHATE	Scott Beesinger	
QC'ed By:	MAU	William A. Foss	2/12/2019

WELL AND PURGING INFORMATION

Measuring Point : Top of CasingPurging Method/Equipment: Low FlowCasing ID (in.): 4Purge Start Date/Time: 1/22/2019 / 08:35Depth to Water - Initial (DTWi) (ft) 6.5Purge End Date/Time: 1/22/2019 / 09:05Measured Depth of Well (ft): 23.53PID Reading: N/AScreen Interval (ft): 13.00 - 23.00Pump Start Time: 1/22/2019 / 08:35

	Location ID: 04WW09 Sample No: 04WW09-190122									
Date of Reading	Time of Reading	Purge Rate	Total Purge	DTW	Cond.	Temp.	рН	Turbidity	ORP	DO
		(ml/min)	(L)	(ft)	(mS/cm)	(°C)		(NTU)	(mV)	(mg/L)
	Purge Stabilization Criteria	-	-	Drawdown limit 0.3 ft	<u>+</u> 10%		<u>+</u> 0.1 units	No criteria		<u>+</u> 10% or 0.2 mg/L
1/22/2019	08:40	100	0.50	6.58	0.561	16.65	6.40	49.4	327	6.51
1/22/2019	08:45	100	1.0	6.64	0.563	17.40	6.10	17.8	327	6.05
1/22/2019	08:50	100	1.5	6.68	0.563	17.60	6.03	7.30	327	5.85
1/22/2019	08:55	100	2.0	6.71	0.562	17.68	6.02	5.9	327	5.83
1/22/2019	09:00	100	2.5	6.73	0.562	17.75	6.02	4.5	326	5.80
1/22/2019	09:05	100	3.0	6.74	0.562	17.81	6.02	3.2	326	5.78

Location ID: 04WW10

Sampler(s): Scott Beesinger

FIELD CONDITIONS Cloudy

SAMPLING INFORMATION

Sample No: 04WW10-190122	DATE/TIME: 1/22/2019/ 09:55	Pump Inlet Depth (ft): 17.00
Sampling Method: Bladder Pump	Sample Purpose: REG	Sample Matrix: GW

Sample Notes:

	COC Notes	Analysis Group	Analytic Method
ALSHT-012219	None	PERCHLORATE	6850

Sampler:	Satur Bie Sys BHATE	Scott Beesinger	
QC'ed By:	man	William A. Foss	2/12/2019

WELL AND PURGING INFORMATION

Measuring Point : <u>Top of Casing</u> Casing ID (in.): <u>4</u>

Depth to Water - Initial (DTWi) (ft) 6.79

Measured Depth of Well (ft): 22.53

Screen Interval (ft): 12.00 - 22.00

Pump Start Time: 1/22/2019 / 09:25

Purging Method/Equipment: Low Flow Purge Start Date/Time: <u>1/22/2019 / 09:25</u> Purge End Date/Time: <u>1/22/2019 / 09:55</u>

PID Reading: N/A

Location ID: 04WW10 Sample No: 04WW10-190122										
Date of Reading	Time of Reading	Purge Rate	Total Purge	DTW	Cond.	Temp.	рН	Turbidity	ORP	DO
		(ml/min)	(L)	(ft)	(mS/cm)	(°C)		(NTU)	(mV)	(mg/L)
	Purge Stabilization Criteria	-	-	Drawdown limit 0.3 ft	<u>+</u> 10%		<u>+</u> 0.1 units	No criteria		<u>+</u> 10% or 0.2 mg/L
1/22/2019	09:30	100	0.50	6.87	1.12	15.48	6.27	7.50	325	4.14
1/22/2019	09:35	100	1.0	6.93	1.17	15.55	6.0	4.6	327	3.78
1/22/2019	09:40	100	1.5	6.98	1.17	15.56	5.66	4.1	331	3.65
1/22/2019	09:45	100	2.0	7.01	1.17	15.56	5.64	3.7	332	3.63
1/22/2019	09:50	100	2.5	7.03	1.17	15.57	5.63	3.2	332	3.61
1/22/2019	09:55	100	3.0	7.04	1.17	15.58	5.62	2.7	333	3.59

Project No: 501032

Sampler(s): Scott Beesinger

FIELD CONDITIONS <u>Cloudy</u>

SAMPLING INFORMATION

Sample No: <u>04WW11-190122</u>	DATE/TIME: 1/22/2019/ 08:20	Pump Inlet Depth (ft): 13.50
Sampling Method: Bladder Pump	Sample Purpose: REG	Sample Matrix: GW

Sample Notes:

	COC Notes	Analysis Group	Analytic Method
ALSHT-012219	None	PERCHLORATE	6850

Sampler:	Saits Blo Sign BHATE	Scott Beesinger	
QC'ed By:	MAUN	William A. Foss	2/12/2019

WELL AND PURGING INFORMATION

Measuring Point : Top of Casing Casing ID (in.): 4 Depth to Water - Initial (DTWi) (ft) 5.13 Measured Depth of Well (ft): 18.53

Purging Method/Equipment: Low Flow

Purge Start Date/Time: 1/22/2019 / 07:50

Purge End Date/Time: 1/22/2019 / 08:20

PID Reading: N/A

Screen Interval (ft): 8.5 - 18.5

Pump Start Time: <u>1/22/2019 / 07:50</u>

Sample Collection Log

		Loc	cation ID: 0	4WW11	Sample N	o: 04WW11	-190122			
Date of Reading	Time of Reading	Purge Rate	Total Purge	DTW	Cond.	Temp.	рН	Turbidity	ORP	DO
		(ml/min)	(L)	(ft)	(mS/cm)	(°C)		(NTU)	(mV)	(mg/L)
	Purge Stabilization Criteria	-	-	Drawdown limit 0.3 ft	<u>+</u> 10%		<u>+</u> 0.1 units	No criteria		<u>+</u> 10% or 0.2 mg/L
1/22/2019	07:55	100	0.50	5.20	0.747	13.60	6.13	11.6	334	2.24
1/22/2019	08:00	100	1.0	5.26	0.723	13.55	6.63	7.1	332	1.87
1/22/2019	08:05	100	1.5	5.30	0.717	13.57	6.91	6.2	325	1.62
1/22/2019	08:10	100	2.0	5.33	0.716	13.59	6.93	5.7	324	1.60
1/22/2019	08:15	100	2.5	5.35	0.716	13.60	6.94	5.3	323	1.58
1/22/2019	08:20	100	3.0	5.36	0.716	13.62	6.95	4.8	323	1.57

Sample Co	ollection	Log
-----------	-----------	-----

Sample Matrix: GW

APTIM		59
Project Name: Longhorn AAP	Location ID: LHSMW	01
Project No: 501032	Sampler(s): Scott Be	eesinger
FIELD CONDITIONS Cloudy		
SAMPLING INFORMATION		
Sample No: <u>LHSMW01-190122</u>	DATE/TIME: 1/22/2019 /	Pump Inlet Depth (ft): 12.50

Sample Purpose: REG

10:50

Sampling Method: Bladder Pump

Sample Notes: LHSMW01-190122-MS/MSD Also Collected

	COC Notes	Analysis Group	Analytic Method
ALSHT-012219	None	PERCHLORATE	6850

Sampler:	Saus Bresses BHATE	Scott Beesinger	
QC'ed By:	MAUN	William A. Foss	2/12/2019

WELL AND PURGING INFORMATION

Measuring Point : <u>Top of Casing</u> Casing ID (in.): <u>4</u> Depth to Water - Initial (DTWi) (ft) <u>4.45</u> Measured Depth of Well (ft): <u>18.03</u> Purging Method/Equipment: Low Flow

Purge Start Date/Time: <u>1/22/2019 / 10:20</u>

Purge End Date/Time: 1/22/2019 / 10:50

PID Reading: N/A

Screen Interval (ft): 7.50 - 17.50

Pump Start Time: 1/22/2019 / 10:20

Sample Collection Log

Location ID: LHSMW01					Sample N	o: LHSMW	01-19012	2		
Date of Reading	Time of Reading	Purge Rate	Total Purge	DTW	Cond.	Temp.	рН	Turbidity	ORP	DO
		(ml/min)	(L)	(ft)	(mS/cm)	(°C)		(NTU)	(mV)	(mg/L)
	Purge Stabilization Criteria	-	-	Drawdown limit 0.3 ft	<u>+</u> 10%		<u>+</u> 0.1 units	No criteria		<u>+</u> 10% or 0.2 mg/L
1/22/2019	10:25	100	0.50	4.52	3.19	15.01	5.87	0.0	335	1.09
1/22/2019	10:30	100	1.0	4.57	2.98	15.16	5.50	0.0	348	0.40
1/22/2019	10:35	100	1.50	4.60	2.95	15.15	5.37	0.0	362	0.18
1/22/2019	10:40	100	2.0	4.62	2.95	15.14	5.36	0.0	363	0.18
1/22/2019	10:45	100	2.50	4.63	2.94	15.13	5.35	0.0	364	0.17
1/22/2019	10:50	100	3.0	4.63	2.94	15.13	5.34	0.0	365	0.17

mple Collection Log

	Sample Collection Log
APTIM	
Project Name: Longhorn AAP	Location ID: LHSMW02
Project No: 501032	Sampler(s): Scott Beesinger

FIELD CONDITIONS <u>Sunny</u>

SAMPLING INFORMATION

Sample No: <u>LHSMW02-190121</u>	DATE/TIME: 1/21/2019 / 11:40	Pump Inlet Depth (ft): 13.50
Sampling Method: Bladder Pump	Sample Purpose: REG	Sample Matrix: GW

Sample Notes:

	COC Notes	Analysis Group	Analytic Method
ALSHT-012119	None	PERCHLORATE	6850

Sampler:	States Blo Sys BHATE	Scott Beesinger	
QC'ed By:	MAUN	William A. Foss	2/12/2019

WELL AND PURGING INFORMATION

Measuring Point : Top of Casing Casing ID (in.): 4 Depth to Water - Initial (DTWi) (ft) 12.22

Measured Depth of Well (ft): 19.08

Purging Method/Equipment: Low Flow

Purge Start Date/Time: 1/21/2019 / 11:10

Purge End Date/Time: <u>1/21/2019 / 11:40</u>

PID Reading: N/A

Screen Interval (ft): 8.50 - 18.50

Pump Start Time: 1/21/2019 / 11:10

Sample Collection Log

		Loca	tion ID: LH	SMW02	Sample N	o: LHSMW	02-19012	1		
Date of Reading	Time of Reading	Purge Rate	Total Purge	DTW	Cond.	Temp.	рН	Turbidity	ORP	DO
		(ml/min)	(L)	(ft)	(mS/cm)	(°C)		(NTU)	(mV)	(mg/L)
	Purge Stabilization Criteria	-	-	Drawdown limit 0.3 ft	<u>+</u> 10%		<u>+</u> 0.1 units	No criteria		<u>+</u> 10% or 0.2 mg/L
1/21/2019	11:15	100	0.5	12.30	0.307	13.48	6.87	39.9	276	3.45
1/21/2019	11:20	100	1.0	12.36	0.287	14.10	6.28	36.8	292	3.38
1/21/2019	11:25	100	1.5	12.39	0.279	14.14	6.12	31.7	297	3.30
1/21/2019	11:30	100	2.0	12.42	0.278	14.17	6.11	31.2	298	3.28
1/21/2019	11:35	100	2.5	12.44	0.278	14.20	6.10	30.9	299	3.27
1/21/2019	11:40	100	3.0	1246	0.278	14.24	6.09	30.5	299	3.26

	PREPARE	D FOR APTIM Federal Serv	vices, LLC.			
	25	00 CityWest Blvd, Suite 17	700			
		Houston, Texas 77042				
ן	TEXAS S	TATE PLANE COORDINATE	SYSTEM			
	NORTH CENTRAL Z	ONE (4202), 1983 NORTH	AMERICAN DATUM			
MONITORING WELL	NORTHING	EASTING	NAVD 88 E	88 ELEVATION		
	TOP OF CASING	TOP OF CASING	TOP OF CASING	GROUND		
04WW06	6959225.38	3305871.99	215.63	212.52		
04WW07	6959038.63	3306006.11	214.64	211.66		
04WW08	6959148.15	3305963.41	214.82	212.07		
04WW09	6959090.67	3305897.71	214.61	211.47		
04WW10	6959041.73	3305928.94	213.67	210.40		
04WW11	6959032.36	3305839.02	212.01	209.31		
17WW19	6952718.36	3315313.67	180.08	176.63		
17PZ01	6952783.40	3315662.50	177.22	174.14		
17PZ02	6952764.55	3315647.64	177.75	174.57		
17PZ03	6952773.35	3115739.59	177.76	174.69		
17WW20	6952980.24	3315580.24	180.02	177.13		
FLOWLINE CREEK 1	6958236.20	3307772.02	198.47 TOP BANK	191.49 FLOWLINE		
FLOWLINE CREEK 2	6958026.38	3308220.92	196.62 TOP BANK	189.16 FLOWLINE		

DAVID R. COLLINS, JR.

SURVEY DATE: FEBRUARY 1, 2019

R.P.L.S.#6488

Appendix B

ISB Design Calculation Sheets

EOS Remediation, LLC		EOS	S [®] SOURCE A	ersion 2.1f, Rev.	. Date: June '		SHEET	
	Help	Site Nam	e: Longhorn A	www.EOSRem	LHAAP04			
	neip	Location: Project N	Karnack, TX		LHAAF 04			
					X Source Ar	ea Length	Groundwate	r Flow
Step 1: Select a Substrate from	m the EOS [®] Fami	ly of Bioremediation	on Products	۲ -			EOS® Emulsion & Ch	ase Water
ubstrate Selected (pick from drop down lis or Product Literature Click Here	st)	EOS® 598B42 (Preferre	ed for Chlorinateds)	y	Sour		Treated Groundwater	\sum
Step 2: EOS [®] Consumption Du	•	t Biodegradation	/ Biotransform	ation				D Treatment Diameter
Section A: Source Area Dimension ength of treatment area parallel to ground	iwater flow, "x"	105		32.0			Injection Point	y,
Vidth of treatment area perpendicular to gr Ainimum depth to contamination Aaximum depth of contamination	roundwater flow, "y"	105 12 20	ft	32.0 3.7 6.1	m m m		111	
reatment thickness, "z" reatment zone cross-sectional area, A = g	∫*z	8 840	ft	2.4 78.0	m m²		<u>``</u>	Ų M
Section B: Groundwater Flow Ra	ate / Site Data							ų)
ioil Characteristics Iominal Soil Type (pick from drop down lis iotal Porosity (accept default or enter <i>n</i>)	st)	Silty Sa						•
ffective Porosity (accept default or enter <i>r</i> ioil bulk density; (1-n)*2.65 g/cc (accept ca		0.28	3 (decimal)	116	lbs / ft ³			
raction of organic carbon: foc		0.005	50 range: 0.000	1 to 0.01				
lydraulic Characteristics lydraulic Conductivity (accept default or er lydraulic Gradient (accept default or enter		0.09		3.5E-05	i cm/sec			
lote: Since the hydraulic gradier Tool so that you can enter	t $(i = dh/dx)$ is negative a positive number for co	, we ask you to enter -i in nvenience.				_		
ion-reactive Transport Velocity, $V_x = -(R_x)$ sroundwater flow rate through treatment ze		LESS THAN 0.01	iouuy	LESS THAN LESS THAN	0.003	m/day L/day		
Section C: Calculated Contact Lo				_		_		
contact time ($ au$) between oil and contamin calculated Contact Length (X) $= aust V_x$	nants (accept default or e	enter τ) Suggested Mir	60 himum 5.0	typical values 6	30 to 180 days, 1.5	see comment		
reatment zone volume reatment zone groundwater volume (volur	mo * porocitu)	88,20 197,9		2,498 749,264	m ³			
Section D: Design Lifespan For (5	year(s)	typical values 5	J∟ 5 to 10 years			
stimated total groundwater volume treated		229,7		870,811				
Section E: Electron Acceptors Dissolved Phase Electron Donor	Demand							
Input	s	Typical \	/alue GW Conc. (mg/L)	MW (g/mole)	e" equiv./ mole	Stoichiometry Contaminant/ H ₂	Hydrogen Demand (g H ₂)	
Dissolved Oxygen (DO)		0 to		32.0	4	(wt/wt H ₂) 7.94	393.8783374	
Nitrate Nitrogen (NO ₃ [°] - N) Sulfate (SO4 ^{2°}) Fetrachloroethene (PCE), C2Cl4		1 to 1 10 to 5		62.0 96.1 165.8	5 8 8	12.30 11.91 20.57	707.7589029 1461.940169	
richloroethene (TCE), C ₂ HCl ₃ is-1,2-dichloroethene (c-DCE), C ₂ H ₂ Cl ₂				131.4	6 4	21.73 24.05		
/inyl Chloride (VC), C ₂ H ₃ Cl Carbon tetrachloride, CCl ₄				62.5 153.8	2 8	31.00 19.08		
Chloroform, CHCl ₃ sym-tetrachloroethane, C ₂ H ₂ Cl ₄ I,1,1-Trichloroethane (TCA), CH ₃ CCl ₃				119.4 167.8	6 8	19.74 20.82		
1,1-Dichloroethane (DCA), CH ₂ CHCl ₂ Chloroethane, C ₂ H ₅ Cl				133.4 99.0 64.9	6 4 2	22.06 24.55 32.18		
Perchlorate, CIO4 Hexavalent Chromium, Cr[VI]			10	99.4 52.0	8 3	12.33 17.20	706.1846342	
Jser added Jser added Jser added						-		
he concentration of the sorbed contamina Where: Default val	K_{oc} is partition or f_{oc} (fraction organ C_{WATER} is the contract of the contract of the second secon	$C_{SOIL} = K_{OC}$ beficient with respect to o nic carbon) is the mass of ncentration of the contam US EPA, Superfund Sec	organic carbon. Forganic matter in so inant in the groundw	ater			<u>C</u> oefficients (Avera	age Value Used)
				C SOIL	Mass	Hydrogen Demand		
Input: Adjust Koc as necessary to pro or enter sediment con	vide site specific estimation	tes	K_{oc}	(mg/Kg)	(g)	(g H ₂)		
Adjust Koc as necessary to pro- or enter sediment con- retrachloroethene (PCE), C ₂ Cl ₄	vide site specific estimation	les	(L/kg) 272		(g)	(g H ₂)	-	
Adjust Koc as necessary to pro-	vide site specific estimation	tes	(L/kg)		(g)	(g H ₂)	-	
Adjust Koc as necessary to pro- or enter sediment con- retrachloroethene (PCE), C ₂ Cl ₄ frichloroethene (TCE), C ₂ HCl ₅ iis-1,2-dichloroethene (c-DCE), C ₂ H ₂ Cl ₂	vide site specific estimation	les	(L/kg) 272 97 38		(g)	(g H ₂)	-	
Adjust <i>Koc</i> as necessary to pro or enter sediment com fetrachioroethene (PCE), C ₂ Cl ₄ frichioroethene (TCE), C ₂ HCl ₃ is-1,2-dichioroethene (c-DCE), C ₂ H ₂ Cl ₂ /hi/yh Chiorde (VC), C ₃ H ₃ Cl ₄ Carbon tetrachioride, CCl ₄ Chioroform, CHCl ₃ ym-tetrachioroethane, (CA), CH ₃ Cl ₄ 1,1-Trichioroethane (TCA), CH ₃ CCl ₃	vide site specific estimation	tes	(L/kg) 272 97 38 241 158 53 79 139		(g)	(g H ₂)	-	
Adjust Kac as necessary to pro or enter sediment con etrachioroethene (PCE), C ₂ Cl ₄ richloroethene (TCE), C ₂ HO ₃ is-1,2-dichloroethene (c-DCE), C ₂ H ₂ Cl ₂ inyl Chloride (VC), C ₂ H ₃ Cl arbon tetrachloride, CCl ₄ chloroform, CHCl ₃ ym-tetrachloroethane, C ₂ H ₂ Cl ₄ 1,1-Trichloroethane (TCA), CH ₃ CCl ₃ 1,Dichloroethane (DCA), CH ₂ CHCl ₂ lser added	vide site specific estimation		(L/kg) 272 97 38 241 158 53 79		(g)	(g H ₂)	-	
Adjust Koc as necessary to pro or enter sediment con etrachioroethene (FCE), C ₂ Cl ₄ richloroethene (FCE), C ₂ HCl ₃ is-1,2-dichloroethene (c-DCE), C ₂ H ₂ Cl ₂ rinyl Chloride, (CCl ₄ Juliorider, CCl ₄ Juliorider, CCl ₄ Juliorider, CHCl ₃ ym-tetrachloroethane, C ₂ H ₂ Cl ₄ ,1,1-Trichloroethane (TCA), CH ₂ CCl ₃ ,1-Dichloroethane (TCA), CH ₂ CCl ₃ Jser added	vide site specific estimation		(L/kg) 272 97 38 241 158 53 79 139		(g)	(g H ₂)	-	
Adjust <i>Koc</i> as necessary to pro or enter sediment com fetrachioroethene (PCE), C ₂ Cl ₄ Trichloroethene (TCE), C ₂ HCl ₃ isi-1,2-dichloroethene (c-DCE), C ₂ H ₂ Cl ₂ //in/yl Chloride (VC), C ₂ H ₂ Cl 2arbon tetrachloride, CCl ₄ 2hloroform, CHCl ₃ sym-tetrachloroethane, C ₂ H ₂ Cl ₄ (,1-Dichloroethane (DCA), CH ₂ CHCl ₂ /ser added Jser added	vide site specific estima centration (C _{solt})	arbon Losses	(L/kg) 272 97 38 241 158 53 79 139 54 	(mg/Kg)		Stoichiometry	Hydrogen	DOC Released
Adjust <i>Ko</i> c as necessary to pro or enter sediment com enter sediment com istancial content of the sediment com istancial content of the sediment istancial content of the sedim	vide site specific estima centration (C _{solt})	arbon Losses	(L/kg) 272 97 38 241 158 53 79 139 54 	(mg/Kg)	(g) e' equiv/ mole	Stoichiometry Contaminant / H2	Demand (g H ₂)	DOC Released (moles)
Adjust <i>Kac</i> as necessary to pro or enter sediment com etrachioreethene (PCE), C ₂ Cl ₄ richloroethene (TCE), C ₂ HCl ₃ is-1,2-dichloroethene (c-DCE), C ₂ H ₂ Cl ₂ inyl Choide (VC), C ₂ H ₂ Cl arbon tetrachloride, CCl ₄ thioroform, CHCl ₃ ym-tetrachloroethane (TCA), CH ₂ CCl ₅ 1,1-Dichloroethane (DCA), CH ₂ CHCl ₂ ser added iser added Section F: Additional Hydroge Generation (Potential stimated Amount of Pet ² Formed	vide site specific estima centration (C _{soll})	tarbon Losses Typical V 10 to 1 5 to 2	(L/kg) 272 97 38 241 158 53 79 139 54 	(mg/Kg)	e' equiv./ mole	Stoichiometry Contaminant /	Demand	(moles)
Adjust <i>Kac</i> as necessary to pro- ore neter sediment com etrachloroethene (PCE), C ₂ Cl ₄ richloroethene (TCE), C ₂ HCJ ₃ ss-1,2-dichloroethene (c-DCE), C ₂ H ₂ Cl ₂ injvC holvide (VC), C ₂ H ₂ Cl iarbon tetrachloride, CCl ₄ hiloroform, CHCJ ₃ ym: tetrachloroethane (TCA), CH ₃ CCl ₃ ,1-Dichloroethane (DCA), CH ₂ CHCl ₂ iser added ser added ser added Section F: Additional Hydroge Generation (Potential stimated Amount of Fe2 ⁺ Formed stimated Amount of CH ₄ Formed arget Amount of DOC to Release	vide site specific estima centration (C _{soll})	arbon Losses Typical V 10 to 1 5 to 2 60 to 1	(L/kg) 272 97 38 241 158 53 79 139 54 	(mg/Kg)	e' equiv/ mole 1 2	Stoichiometry Contaminant / H ₂ 55.41 27.25	Demand (g H ₂) 785.8272003 159.760166	
Adjust <i>Koc</i> as necessary to pro or enter sediment com enter sediment com etrachioreethene (PCE), C ₂ Cl ₄ richioreethene (TCE), C ₂ H2O ₃ is-1,2-dichloreethene (c-DCE), C ₂ H2O ₂ indy Chiode (VC), C ₂ H ₂ O1 arbon tetrachloride, CCl ₄ Chioroform, CHCl ₃ ymr-tetrachloreethane (TCA), CH ₃ CCl ₃ ,1-Dichloreethane (DCA), CH ₂ CHCl ₂ Jser added seer added seer added Section F: Additional Hydroge Generation (Potential estimated Amount of Fe2 ⁺ Formed estimated Amount of CH ₄ Formed arget Amount of DOC to Release	vide site specific estima centration (C _{soll})	arbon Losses Typical V 10 to 1 5 to 2 60 to 1	(L/kg) 272 97 38 241 158 53 79 139 54 54 54 54 50 50 50 50 50 50 100 100 Calculatio 1.) all reaction	(mg/Kg)	e' equiv./ mole 1 2 8 on during passe	Stoichiometry Contaminant / H ₂ 55.41 27.25 1.99	Demand (g H ₂) 785.8272003 159.760166	(moles) 7250.11
Adjust Are as necessary to pro- or enter sediment com enter sediment com enter sediment com enter sediment com enter sediment com isel .2-dichloroethene (C-DCE), C.gHgCla, ichiorom, CHCla, ym-tetrachloroethane (CA), CHgCla, 1,-1:richioroethane (DCA), CHgCHCla, 1,-1:richioroethane (DCA), CHgCHCla, 1,-1:rich	vide site specific estima centration (C _{sott})	arbon Losses Typical \ 10 to 1 5 to 2 60 to 1	(L/kg) 272 97 38 241 158 53 79 139 54 54 54 54 54 54 54 54 54 54	(mg/Kg) (mg	e' equiv./ mole 1 2 8 on during passe	Stoichiometry Contaminant / H ₂ 55.41 27.25 1.99	Demand (g H ₂) 785.8272003 159.760166 4376.798773	(moles) 7250.11
Adjust <i>Ka</i> : as necessary to pro or enter sediment con fetrachloroethene (PCE), C ₂ /H ₂ (J Trichloroethene (TCE), C ₂ /H ₂ (J Stish 2, 4ichloroethene (c-DCE), C ₃ /H ₂ Cl ₂ <i>i</i> (inyl Chloride (VC), C ₂ /H ₂ Cl 2mbor tetrachloroethane, C ₂ /H ₂ Cl 1, 1, 1-Trichloroethane, C ₄ /H ₂ Cl 1, 1, 1-Trichloroethane (DCA), CH ₂ CHCl ₂ Jser added Jser added Section F: Additional Hydroge Section F: Additional Hydroge Constant (Potential Estimated Amount of Fe ²⁺ Formed Estimated Amount of CH ₄ Formed Iarget Amount of DOL to Release	vide site specific estima centration (C _{sott})	arbon Losses Typical \ 10 to 1 5 to 2 60 to 1	(L/kg) 272 97 38 241 158 53 79 139 54 	(mg/Kg)	e' equiv./ mole 1 2 8 on during passe	Stoichiometry Contaminant / H ₂ 55.41 27.25 1.99	Demand (g H ₂) 785.8272003 159.760166 4376.798773	(moles) 7250.11
Adjust <i>Xcc</i> as necessary to pro or enter sediment com reter sediment com istrachioroethene (PCE), C ₂ /4 ₀ (irichloroethene (TCE), C ₂ /4 ₀ (1 arbon tetrachloride, CCl ₄ 2hioroform, CHCl ₃ ym-letrachloroethane, C ₂ /4 ₂ (1 ,1-Dichloroethane, C ₂ /4 ₂ (1 ,1-Dichloroethane, C ₄ /4 ₂ (1 ,1-Dichloroethane (CA), CH ₂ CHCl ₂ Jser added Jser added Section F: Additional Hydroge Generation (Potential Estimated Amount of Fe2 ⁺ Formed Estimated Amount of Manganese (Mn ⁴⁺) Fe Estimated Amount of DOC to Release Design Safety Factor: 2.0	vide site specific estima centration (C _{solt})	arbon Losses Typical V 10 to 1 5 to 2 60 to 1 3 a pn Demand and Car 37.5 827. quirement Based on	(L/kg) 272 97 38 241 158 53 79 139 54 54 54 54 54 50 50 50 50 50 50 50 50 50 50	(mg/Kg)	e' equiv./ mole 1 2 8 on during passe	Stoichiometry Contaminant / H ₂ 55.41 27.25 1.99	Demand (g H ₂) 785.8272003 159.760166 4376.798773	(moles) 7250.11
Adjust <i>Ka</i> c as necessary to pro or enter sediment com enter sediment com istrachioroethene (PCE), C ₂ /4(1) ist-1,2-dichloroethene (C-DCE), C ₂ /4/2(1) arbon tetrachloride, CCl ₄ bioroform, CHCl ₃ ym-tetrachloroethane, C ₂ /4,2(1) ,1-Dichloroethane, C ₂ /4,2(1) ,1-Dichloroethane, C ₂ /4,2(1) ,1-Dichloroethane (CA), CH ₂ CHCl ₂ Jser added Jser added Section F: Additional Hydroge Generation (Potential Estimated Amount of Fe2 ⁺ Formed Estimated Amount of Kanganese (Mn ⁴⁺) Fe Estimated Amount of DOC to Release Design Safety Factor: 2.0	vide site specific estima centration (C _{solt})	arbon Losses Typical V 10 to 1 5 to 2 60 to 1 3 en Demand and Car 37.5 827. quirement Based on smand and Carbon Loss	(L/kg) 272 97 38 241 158 53 79 139 54 54 54 54 54 50 50 50 50 50 50 50 50 50 50	(mg/Kg)	e' equiv./ mole 1 2 8 on during passe	Stoichiometry Contaminant / H ₂ 55.41 27.25 1.99	Demand (g H ₂) 785.8272003 159.760166 4376.798773	(moles) 7250.11
Adjust <i>Xa</i> c as necessary to pro- or enter sediment com enter sediment com enter sediment com enter sediment com isi-1,2-dichloroethene (C-DC), C,H ₂ Cl ₂ choron tetrachloride, CCl ₂ choron, CHCl ₃ ym-tetrachloroethane (CA), CH ₂ CH ₂ ,1-Dichloroethane (DCA), CH ₂ CHCl ₂ ser added ser added Section F: Additional Hydroge Generation (Potential estimated Amount of Fe ² Formed estimated Amount of Fe ² Formed estimated Amount of DC to Release Design Safety Factor: 2.0	vide site specific estima centration (C _{sott})	arbon Losses Typical V 10 to 1 5 to 2 60 to 1 3 an Demand and Car arguirement Based on mand and Carbon Loss 1,000 Ibs	(L/kg) 272 97 38 241 158 53 79 139 54 	(mg/Kg)	e' equiv./ mole 1 2 8 on during passe	Stoichiometry Contaminant / H ₂ 55.41 27.25 1.99	Demand (g H ₂) 785.8272003 159.760166 4376.798773	(moles) 7250.11
Adjust <i>Xa</i> : as necessary to pro or enter sediment con renter sediment con etrachtoroethene (PCE), C ₂ /4Cl ₃ is-1,2-dichloroethene (c-DCE), C ₂ /4Cl ₂ dirbon tetrachloride, CCl ₄ 2hloroform, CHCl ₃ ym-tetrachloroethane (CA), CH ₂ Cl ₄ ,1-Dichloroethane (DCA), CH ₂ CHCl ₂ ,1-Dichloroethane (DCA), CH ₂ CHCl ₂ ser added section F: Additional Hydroge Generation (Potential estimated Amount of Fe2 [®] Formed arget Amount of DOC to Release Design Safety Factor: 2.0 COS [®] Requirement Calculations tocknometric Hydrogen Demand DOC Released	vide site specific estima centration (C _{sott})	arbon Losses Typical V 10 to 1 5 to 2 60 to 1 3 an Demand and Car arguirement Based on mand and Carbon Loss 1,000 Ibs	(L/kg) 272 97 38 241 158 53 79 139 54 	(mg/Kg)	e' equiv./ mole 1 2 8 on during passa try.	Stoichiometry Contaminant / H ₂ 55.41 27.25 1.99	Demand 1 (g H ₂) 785.8272003 159.760166 4376.798773	(moles) 7250.11
Adjust <i>Xa</i> c as necessary to pro or enter sediment com or enter sediment com etrachioroethene (PCE), C ₂ /4 _C (1 richloroethene (TCE), C ₂ /4 _C (2 divident of the comparison of the comparison provident of the comparison of the comparison provident of the comparison of the comparison ser added ser added se	vide site specific estima centration (C _{SOIZ})	arbon Losses Typical V 10 to 1 5 to 2 60 to 1 3 an Demand and Car arguirement Based on mand and Carbon Loss 1,000 Ibs	(L/kg) 272 97 38 241 158 53 79 139 54 	(mg/Kg)	e' equiv./ mole 1 2 8 on during passe try.	Stoichiometry Contaminant / H ₂ 55.41 27.25 1.99 age through emu age through emu ment by Aquifer with some clay 0.0 higher silt/clay con	Demand 1 (g H ₂) 785.8272003 159.760166 4376.798773 isified edible oil tre sified edible oil tre 1 to 0.002 lbs EOS ¹ 01 to 0.002 lbs EOS ¹	(moles) 7250.11 Nated zone; and, */ Ibs soil s EOS [®] / Ibs soil
Adjust <i>Ka</i> c as necessary to pro- orenter sediment com enter sediment com enter sediment com enter sediment com enter sediment com enter sediment com provide the comparison of the iser added enter a	vide site specific estima centration (C _{SOIZ})	arbon Losses Typical V 10 to 1 5 to 2 60 to 1 3 an Demand and Car arguirement Based on mand and Carbon Loss 1,000 Ibs	(L/kg) 272 97 38 241 158 53 79 139 54 	(mg/Kg)	e' equiv./ mole 1 2 8 on during passe try.	Stoichiometry Contaminant / H ₂ 55.41 27.25 1.99 age through emu sign through emu with some clay 0.0 higher silt/clay con provided based on 1	¹ Demand ¹ (<i>g H</i> ₂) 785.8272003 159.760166 4376.798773 isified edible oil tre isified edible oil tre Material ¹ 01 to 0.002 lbs EOS ¹	(moles) 7250.11 Nated zone; and, */ Ibs soil s EOS [®] / Ibs soil
Adjust <i>Xcc</i> as necessary to pro or enter sediment com reter sediment com istrachioroethene (PCE), C ₂ /4 ₀ (irichloroethene (TCE), C ₂ /4 ₀ (1 arbon tetrachloride, CCl ₄ 2hioroform, CHCl ₃ ym-letrachloroethane, C ₂ /4 ₂ (1 ,1-Dichloroethane, C ₂ /4 ₂ (1 ,1-Dichloroethane, C ₄ /4 ₂ (1 ,1-Dichloroethane (CA), CH ₂ CHCl ₂ Jser added Jser added Section F: Additional Hydroge Generation (Potential Estimated Amount of Fe2 ⁺ Formed Estimated Amount of Manganese (Mn ⁴⁺) Fe Estimated Amount of DOC to Release Design Safety Factor: 2.0	vide site specific estima centration (C sout)	arbon Losses Typical V 10 to 1 5 to 2 60 to 1 3 an Demand and Car and Carbon Loss 1,000 lbs nt by Aquifer Mate	(L/kg) 272 97 38 241 158 53 79 139 54 54 79 139 54 54 79 139 54 54 54 54 54 54 53 79 139 54 54 54 54 54 54 54 54 54 54	(mg/Kg)	e' equiv./ mole 1 2 8 on during passa try.	Stoichiometry Contaminant / H ₂ 55.41 27.25 1.99 age through emu sign through emu with some clay 0.0 higher silt/clay con provided based on 1	Demand 1 (g H ₂) 785.8272003 159.760166 4376.798773 isified edible oil tre sified edible oil tre 1 to 0.002 lbs EOS ¹ 01 to 0.002 lbs EOS ¹	(moles) 7250.11 Nated zone; and, */ Ibs soil s EOS [®] / Ibs soil
Adjust Ace as necessary to pro- or enter sediment com enter sediment c	vide site specific estima centration (C sout)	arbon Losses Typical V 10 to 1 5 to 2 60 to 1 3 an Demand and Car and Carbon Loss 1,000 lbs nt by Aquifer Mate	(L/kg) 272 97 38 241 158 53 79 139 54 /alue GW Conc. (mg/L) 100 50 50 100 100 Calculatio 1.) all reactic 2.) perfect re bon Losses 9 pounds 8 pounds 8 pounds 8 pounds 8 pounds 9 calculatio 1.0 all reactic 2.0 perfect re 0.0 25 0.0 25 0.0 0.0020 ent Based on	(mg/Kg)	e' equiv./ mole 1 2 8 on during passa try.	Stoichiometry Contaminant / H ₂ 55.41 27.25 1.99 age through emu sign through emu with some clay 0.0 higher silt/clay con provided based on 1	Demand 1 (g H ₂) 785.8272003 159.760166 4376.798773 isified edible oil tre sified edible oil tre 1 to 0.002 lbs EOS ¹ 01 to 0.002 lbs EOS ¹	(moles) 7250.11 Nated zone; and, */ Ibs soil s EOS [®] / Ibs soil
Adjust <i>Ka</i> c as necessary to pro- or enter sediment con enter sediment enter sediment	vide site specific estima centration (C sout)	arbon Losses Typical V 10 to 1 5 to 2 60 to 1 3 an Demand and Car an Demand and Car ar guirement Based on smand and Carbon Loss 1,000 Ibs Its Its Its Its Its Its Its It	(L/kg) 272 97 38 241 158 53 79 139 54 54 54 54 54 54 54 54 54 54	(mg/Kg)	e' equiv./ mole 1 2 8 on during passa try.	Stoichiometry Contaminant / H ₂ 55.41 27.25 1.99 age through emu sign through emu with some clay 0.0 higher silt/clay con provided based on 1	Demand 1 (g H ₂) 785.8272003 159.760166 4376.798773 isified edible oil tre sified edible oil tre 1 to 0.002 lbs EOS ¹ 01 to 0.002 lbs EOS ¹	(moles) 7250.11 Nated zone; and, */ Ibs soil s EOS [®] / Ibs soil
Adjust <i>Xa</i> : as necessary to pro- ore neter sediment con- orenter sediment con- enter sediment con- fittachloroethene (PCE), C ₂ H ₂ Cl ₂ (hipy Cholde (VC), C ₂ H ₂ Cl 2arbon tetrachloride, CCl ₄ 2hioroform, CHCl ₅ (m) Ethicorethane (CA), CH ₂ CH ₂ Cl ₄ (1.1-Trichloroethane (DCA), CH ₂ CHCl ₂ Jser added Jser added Jser added Jser added Section F: Additional Hydroge Generation (Potential Estimated Amount of Fe2 [®] Formed Estimated Amount of CH ₄ Formed Estimated Amount of CH ₄ Formed Stimated Amount of DC to Release Design Safety Factor: 2.0 EOS [®] Requirement Calculations Biolichiometric Hydrogen Demand DOC Released	vide site specific estima centration (C sout)	arbon Losses Typical \ 10 to 1 5 to 2 60 to 1 3 an Demand and Car and and Carbon Loss 1,000 bs 1,000 bs 1,000	(L/kg) 272 97 38 241 158 53 79 139 54 54 54 54 54 54 54 54 54 54	(mg/Kg)	e' equiv./ mole 1 2 8 on during passa try.	Stoichiometry Contaminant / H ₂ 55.41 27.25 1.99 age through emu sign through emu with some clay 0.0 higher silt/clay con provided based on 1	Demand 1 (g H ₂) 785.8272003 159.760166 4376.798773 isified edible oil tre sified edible oil tre 1 to 0.002 lbs EOS ¹ 01 to 0.002 lbs EOS ¹	(moles) 7250.11 Nated zone; and, */ Ibs soil s EOS [®] / Ibs soil
Adjust <i>Ka</i> c as necessary to pro- ore neter sediment con- ore neter sediment con- enter sediment con- enter sediment con- list 1,2-adchioroethene (C-DCE), C,2H ₂ Cl ₂ , injuchtoned (VC), C,H ₂ Cl 2arbon tetrachloride, CCl ₄ 2arbon tetrachloride, CCl ₄ 2.1-Dichloroethane (DCA), CH ₂ CHCl ₂ 2.1-Dichloroethane (DCA), CH ₂ CHCl ₂ 2.1-Dichloroethane (DCA), CH ₂ CHCl ₂ 2.2-Dichloroethane (DCA), CH ₂ CHCl ₂	vide site specific estima centration (C sout)	arbon Losses Typical \ 10 to 1 5 to 2 60 to 1 3 an Demand and Car and and Carbon Loss 1,000 bs 1,000 bs 1,000	(L/kg) 272 97 38 241 158 53 79 139 54 54 54 54 54 54 54 54 54 54	(mg/Kg)	e' equiv./ mole 1 2 8 on during passa try.	Stoichiometry Contaminant / H ₂ 55.41 27.25 1.99 age through emu sign through emu with some clay 0.0 higher silt/clay con provided based on 1	Demand 1 (g H ₂) 785.8272003 159.760166 4376.798773 isified edible oil tre sified edible oil tre 1 to 0.002 lbs EOS ¹ 01 to 0.002 lbs EOS ¹	(moles) 7250.11 Nated zone; and, */ Ibs soil s EOS [®] / Ibs soil
Adjust <i>Xa</i> : as necessary to pro- orenter sediment con orenter sediment con set. <i>Construction</i> (PCE), C,CI4, richloroethene (PCE), C,HCJ3, is 1,2-dichloroethene (C-OC), C,HCG2, 2arbon tetrachloride, CC4, 2hioroforn, CHCJ5, ym-tetrachloroethane (DCA), CH3CHCJ2, Jaser added ser added ser added ser added <i>Section F: Additional Hydroge</i> <i>Generation (Potential</i> <i>Section F: Additional Hydroge</i> <i>Generation (Potential</i> <i>Stimated Amount of Fe2</i> ' Formed stimated Amount of PC2' Formed stimated Amount of DC to Release Design Safety Factor: 2.0 COS® Requirement Calculations stoichiometric Hydrogen Demand DOC Released <i>Section F: Section Section</i> (National <i>Coc Released</i>) <i>State of the section on Effective Thickne</i> veight of sectiment to be treated adsorptive Capacity of Soil (accept default	vide site specific estima centration (C sout)	arbon Losses Typical V 10 to 1 5 to 2 60 to 1 3 an Demand and Car 3 an Demand and Carbon Loss 1,000 Ibs at by Aquifer Mate Ue) EOS® Requirement by 5,10	(L/kg) 272 97 38 241 158 53 79 139 54 	(mg/Kg)	e' equiv./ mole 1 2 8 on during passa try.	Stoichiometry Contaminant / H ₂ 55.41 27.25 1.99 age through emu sign through emu with some clay 0.0 higher silt/clay con provided based on 1	Demand 1 (g H ₂) 785.8272003 159.760166 4376.798773 isified edible oil tre sified edible oil tre 1 to 0.002 lbs EOS ¹ 01 to 0.002 lbs EOS ¹	(moles) 7250.11 Nated zone; and, */ Ibs soil s EOS [®] / Ibs soil

Site Name:	
Location:	

Location: Project No.: Longhorn AAP LHAAP-04 501032

Carbo	Carbon content of soybean oil				N & P content of nutrient sources				
Major component is lino	leic acid								
CH3(CH2)4CH=CHCH2	CH=CH(CH2)7	CO2CH3,	or C19H340	02	Diamoium Phosphate (DAP) solid (16-46-10)				
Formula weight:	294.48	grams per	mole			molecular wt.	atoms	total wt.	%
Carbon content:	77.42%				Nitrogen	14.0067	2	28.0134	21.21328922
					Hydrogen	1.0079	9	9.0711	6.869136479
Carbon content of 93% soybean oil EVO			Phospate	30.9738	1	30.9738	23.45506713		
Density of EVO	8.10	pounds/ga	llon		Oxygen	15.9994	4	63.9976	48.46250717
Mass of EVO	3,065	pounds					Total	132.1	100
Mass of EVO	1,390	killograms							
Volume of EVO	378	gallons						100lbs of D	AP =21.2 lbs of N
55 gal drum of EVO	6.88	drums					4.71	lbs DAP fo	or 1 lb N
Grade of EVO	100%				Ac	celerite®, liqu	id (JRW Biore	meiation)
Mass of carbon	1,076.42	killograms				5 gallons accele	erite for 5.25 drun	ns EVO	
Mass of carbon	2,368.13	pounds					gal accelrite/drur		
						9.2	lbs accelerite/gal		
Nutrient den	nand based	on 100C::	10N:1P r	atio					
Carbon	2,368	pounds							
Nitrogen	237	pounds							
Phosphate	24	pounds							
NI.									
	utrient sourc		u						
DAP	1,116	lbs							

Nutrient Dosing Calculation Sheet

Site Parameters	units	LHAAP 04
Target Width	feet	105
Target Length	feet	105
Treatment Interval	feet	8
Target Area Volume	cubic feet	88,200
Effective Porosity		0.28
Target Area Water Volume	cubic feet	24,696
Target Area Water Volume	gallons	184,726
Injection Radius of Influence	feet	10
Target Injection Volume (20%)	gallons	36,945
Amendment Volume Requirements		
Emulsified Vegetable Oil	pounds	3,065
Emulsified Vegetable Oil	gallons	367
Emulsified Vegetable Oil	drums	7
Nutrients (DAP)	pounds	1,116
Water	gallons	36,578
Volumes per Point		
Emulsified Vegetable Oil	gallons	15
Nutrients (DAP)	gallons	6
Water	gallons	1,463
Injection Parameters		
Injection Spacing	feet	20
Target Depth	ft bgs	20-Dec
Thickness	feet	8
Total Volume per Point	gallons	1,478
Volume per foot		185
Injection Rate	gpm	3
Injection Pressure (not to exceed)	psi	40
Time per Point	hours	9
Simultaneous Points	points	3
Hours of Injection per day	hours	8
Gallons per day	gallons	4,320
Points to be Completed (Injection Wells)	points	25
Days of Injection	days	9

LHAAP-04 Treatment Area Calculation Worksheet

Notes:

ft bgs - Feet below ground surface. psi - Pound per square inch. gpm - Gallons per minute.

Appendix C

Product Specification and Safety Data Sheets

Tersus Environmental For every zone of your plume, we've got you covered!

EDS-ER[™] Electron Donor Solution – Extended Release

As delivered, the physical state of $EDS-ER^{TM}$ (electron donor solution – extended release) by Tersus Environmental is significantly different than standard emulsified vegetable oil (EVO) products. Whereas other EVO products are concentrated emulsions containing water, $EDS-ER^{TM}$ is a water-mixable oil; it contains no water. Thus, the costs for shipping EDS-ER are about 50% less than conventional products.

At room temperature, EDS- ER^{TM} is a liquid material with an appearance and viscosity roughly equivalent to vegetable oil. Unlike common EVO products, EDS- ER^{TM} will not separate, will not freeze, and has a shelf life of 2 years without spoilage.

Tersus Environmental is proud to announce that *EDS-ER*[™] does NOT contain ethoxylated surfactants. As you may know, many environmental remediation injectates, such as emulsified vegetable oils use biodegradable non-ionic surfactants. Unfortunately, ethoxylation, the manufacturing process that creates these surfactants (e.g., polysorbates) often results in these products containing 1,4-dioxane.

direct-push, wells and excavations)

electron donors

Packaging Options

55-gallon poly drums

Over two years shelf life

Field Application Design

Freezing Point is -4 °F (-20 °C)

Clean, low-cost, non-disruptive application (e.g.,

Lowers transportation costs when compared to other

EDS-ER[™] applications are easily tailored to meet site-

specific conditions. Typical configurations consist of grid

and barrier patterns and application in excavations or

trenches. The product's low viscosity allows subsurface

distribution through direct-push injection points, hollow-

stem augers or pumped through existing wells.

Purpose

EDS-ER[™] is a simple, safe, low-cost solution for the bioremediation of halogenated compounds (e.g., PCE, TCE, DCE, VC, TCA, CT, etc.), perchlorate, explosives such as aromatic nitrates, energetic munitions residuals, nitrates, acids, radionuclides, select oxidized heavy metals, and other contaminants.

Benefits

- 100% fermentable and contains no water
- Because the product is completely water mixable, the number of necessary injection points for low permeability structures decreases
- Easily mixes with water, simplifying field operations
- Controlled release of electron donors for up to five years
- Food-grade carbon source
- Low total dissolved solids to comply with secondary water quality requirements for amendments with low salt content
- Conforms to EPA's EPP (Environmentally Preferable Purchasing) and USDA biobased criteria
- Neutral pH when mixed with water

tersusenv.com • tersusenv.fr • tersusenv.es 919.453.5577 • info@tersusenv.com

Material Safety Data Sheet

Electron Donor Solution

Section 1: Chemical Product and Company Identification

Product Name: Electron Donor Solution Extended Release Catalog Codes: EDS-ER CAS#: 8001-22-7 TSCA: TSCA 8(b) inventory: Soybean oil HMIS Code: H F R P: 10 0 A Trade Name and Synonyms: EDS-ER Chemical Family: Glyceride Oils

Contact Information:

Tersus Environmental, LLC 109 E. 17th Street, Suite #3880 Cheyenne, WY 82001 Ph: 307.638.2822 • info@tersusenv.com www.tersusenv.com **For emergency assistance, call:** 919.638.7892

Section 2: Composition and Information on Ingredients

COMPONANT	CAS #	OSHA TWA	OSHA STEL	ACGIH TWA	ACGIH STEL
Soybean Oil	8001-22-7		10 mg/m ³		
Vegetable Oil Derived Fatty Acid Esters	Confidential				

HAZARDOUS INGREDIENTS: NONE AS DEFINED UNDER THE U.S. OSHA HAZARD COMMUNICATION STANDARD (29 CFR 1910.1200) OR THE CANADIAN HAZARDOUS PRODUCTS. ACT S.C. 1987, C.30 (PART 1).

THE PRECISE COMPOSITION OF THIS PRODUCT IS PROPRIETARY INFORMATION. A MORE COMPLETE DISCLOSURE WILL BE PROVIDED TO A PHYSICIAN IN THE EVENT OF A MEDICAL EMERGENCY.

SARA HAZARD: NONE NOTED (SECTION 311/312) TITLE III SECTION 313 - NOT LISTED All components of this product are listed on the TSCA registry.

Section 3: Physical/Chemical Characteristics

BOILING RANGE: Not applicable VAPOR DENSITY: Exceeds 1.0

SPECIFIC GRAVITY (H20=1.0): 0.92 - 0.925 VAPOR PRESSURE: Not applicable

PERCENT VOLATILE BY VOLUME: 0% SOLUBILITY IN WATER: Miscible

EVAPORATION RATE: Not applicable APPEARANCE AND ODOR: A pale yellow, oily liquid - only a faint odor. WEIGHT PER GALLON: 7.7 lbs. at 60F.

Date: May 11, 2011 Rev. Date: January 24, 2013

Section 4: Fire and Explosion Data

FLAMMABILITY CLASSIFICATION: Combustible Liquid - Class IIIB. FLASHPOINT: Greater than 550 F (288 C). METHOD USED: Tag Closed Cup. EXTINGUISHING MEDIA: CO2, dry chemical, foam, sand. SPECIAL FIREFIGHTING PROCEDURES: Avoid use of water as it may spread fire by dispersing oil. Use water to keep fire-exposed containers cool. Water spray may be used to flush spills away from fire.

UNUSUAL FIRE AND EXPLOSION HAZARDS: Rags soaked with any oil or solvent can present a fire hazard and should always be stored in UL Listed or Factory Mutual approved, covered containers. Improperly stored rags can create conditions that lead to oxidation. Oxidation, under certain conditions can lead to spontaneous combustion.

Section 5: Reactivity Data

STABILITY: Generally stable. Spontaneous combustion can occur. See Unusual Fire and Explosion Procedures, Section IV.

CONDITIONS TO AVOID: High surface area exposure to oxygen can result in polymerization and release of heat.

INCOMPATABILITY (MATERIALS TO AVOID): Avoid contact with strong oxidizing agents.

HAZARDOUS DECOMPOSITIONS OR BY-PRODUCTS: Decomposition may produce carbon dioxide and carbon monoxide.

HAZARDOUS POLYMERIZATION: Will not occur.

Section 6: Health Hazard Data

THRESHHOLD LIMIT VALUE: As a liquid - none. As oil mist - 10 mg/m3 total particulate.

INHALATION HEALTH RISKS AND SYMPTOMS OF EXPOSURE: Excessive inhalation of oil mist may affect the respiratory system. Oil mist is classified as a nuisance particulate by ACGIH.

SKIN ABSORPTION HEALTH RISKS AND SYMPTOMS OF EXPOSURE: Not classified as a primary skin irritant or corrosive material. Sensitive individuals may experience dermatitis after long exposure of oil on skin.

HEALTH HAZARDS (ACUTE AND CHRONIC): Acute: none observed by inhalation. Chronic: none reported.

EMERGENCY AND FIRST AID PROCEDURES FOR:

SKIN CONTACT: May be removed from skin by washing with soap and warm water.

EYE CONTACT: Immediately flush eyes with plenty of cool water for at least 15 minutes. Do NOT let victim rub eyes.

INHALATION: Immediately remove exposed individual to fresh air source. If victim has stopped breathing give artificial respiration, get medical attention immediately.

Section 7: Precautions for Safe Handling and Use

ENVIRONMENTAL PRECAUTIONS: Where large spills are possible, a comprehensive spill response plan should be developed and implemented.

STEPS TO BE TAKEN IN CASE MATERIAL IS RELEASED OR SPILLED: Wear appropriate respiratory protection and protective clothing as described in section VIII. Depending on quantity of spill: (a) Small spill - add solid adsorbent, shovel into disposable container and wash the area. Clean area with detergent. (b) Large spill - Squeegee or pump into holding container. Clean area with detergent. In the event of an uncontrolled release of this material, the user should determine if this release is reportable under applicable laws and regulations.

WASTE DISPOSAL METHOD: All recovered material should be packaged, labeled, transported, and disposed or reclaimed in accordance with local, state, and federal regulations and good engineering practices.

Section 8: Control Measures

RESPIRATORY PROTECTION: Not normally needed. A qualified health specialist should evaluate whether there is a need for respiratory protection under specific conditions.

VENTILATION: Handle in the presence of adequate ventilation. Intermittent clean air exchanges recommended, but not required.

PROTECTIVE GLOVES: Not normally needed. However, protective clothing is always recommended when handling chemicals.

EYE PROTECTION: Eye protection is always recommended when handling chemicals. Wear safety glasses meeting the specifications established in ANSI Standard Z87.1.

Section 9: Special Precautions

PRECAUTIONS TO BE TAKEN IN HANDLING AND STORAGE: Store away from flame, fire, and excessive heat.

Section 10: Disposal Considerations

General Information: Do not discharge into drains, watercourses or onto the ground. Discharge, treatment, or disposal may be subject to national, state, or local laws. Empty containers may contain product residues.

Disposal Methods: No specific disposal method required.

Container: Since emptied containers retain product residue, follow label warnings even after container is emptied.

Section 11: Transportation Information

DOT Not regulated. **TDG** Not regulated. **IATA** Not regulated. **IMDG** Not regulated.

Section 12: Other Information

Hazard Ratings

	Health Hazard	Fire Hazard	Instability	Special Hazard		
NFPA	1	1	0	NONE		
Hazard rating: 0 - Minimal: 1 - Slight: 2 - Moderate: 3 - Serious: 4 - Severe						

Hazard rating: 0 - Minimal; 1 - Slight; 2 - Moderate; 3 - Serious; 4 - Severe NFPA Label colored diamond code: Blue - Health; Red - Flammability; Yellow - Instability; White - Special Hazards

	Health Hazard	Flammability	Physical Hazard	Personal Protection
HMIS	1	1	0	

Hazard rating: 0 - Minimal; 1 - Slight; 2 - Moderate; 3 - Serious; 4 - Severe HMIS Label colored bar code: Blue - Health; Red - Flammability; Orange - Physical Hazards; White -Special

Section 13: Disclaimer and/or Comments

We suggest that containers be either professionally reconditioned for re-use by certified firms or properly disposed of by certified firms to help reduce the possibility of an accident. Disposal of containers should be in accordance with applicable federal, state and local laws and regulations. "Empty" drums should not be given to individuals.

The conditions of handling, storage, use and disposal of the product are beyond our control and may be beyond our knowledge. For this and other reasons, we do not assume responsibility and expressly disclaim liability for loss, damage or expense arising out of or in any way connected with the handling, storage, use or disposal of the product.

The information above is believed to be accurate and represents the best information currently available to us. However, we make no warranty of merchantability or any other warranty, express or implied, with respect to such information, and we assume no liability resulting from its use. Users should make their own investigations to determine the suitability of the information for their particular purposes. In no event shall Tersus Environmental be liable for any claims, losses, or damages of any third party or for lost profits or any special, indirect, incidental, consequential or exemplary damages, howsoever arising, even if Tersus Environmental has been advised of the possibility of such damages.

Appendix D

Daily ISB Injection Log

Drilling Company: _____ Area: _____ Injection Oversight: _____

Oversight Company: Aptim Federal Services, LLC

Injection Operator:

		Pressure	Total Volume	Flow Rate					
Injection Point	Date	(psi)	(gal)	(gpm)	Start	End	Comments		
						LHAAP-04			
	Total Volume 0								

Appendix E

LUC Inspection and Maintenance Checklist and Compliance Certification

Annual Land Use Control Compliance Certification Form

In accordance with the Remedial Design dated _	for LHAAP-04 an
inspection of the site was conducted by	[indicate transferee] on

The land use control mechanisms are:

- Groundwater restrictions prohibit access to the contaminated groundwater except for environmental monitoring and testing only until cleanup goals are met;
- Land use restrictions restrict land use to nonresidential;
- Integrity of remedial and monitoring systems maintain the integrity of any current or future remedial or monitoring systems until cleanup goals are met.

No unauthorized activities or uses have occurred. Compliance with land use controls and restrictions is as follows:

- No use of groundwater (other than environmental testing and monitoring), installation of new groundwater wells, or tampering with existing monitoring wells;
- No land use other than nonresidential; and
- No activities that would compromise the integrity of the remedial or monitoring systems.

I, the undersigned, do document that the inspection was conducted as indicated above, and that the above information is true and correct to the best of my knowledge, information, and belief.

Date:

Name/Title:

Signature:

Annual compliance certification forms shall be completed no later than March 1 of each year for the previous calendar year, retained in the file and provided to Army, EPA and TCEQ upon request.

RAO Inspection and Maintenance Checklist

General Information							
Project Name	RAO Inspection and Maintenance, LHAAP-04 Longhorn Army Ammunition Plant, Karnack, TX						
Contractor							
Inspector's Name							
Inspector's Title							
Inspector's Signature							
Inspector's Contact Number							
Inspection Date							
Type of Inspection	Quarterly Semiannual Annual						
	Prior to forecast rain						

A. 0	A. Groundwater Monitoring Wells					
D.1	Are the installed groundwater monitoring wells in poor condition?					
D.2	Is the well cleared of vegetation and accessible?					
D.3	Any other relevant observations?					
D.4	Are there any significant cracks present?					
D.5	Are there any damaged areas?					